《江苏省盐城市大丰区2017_2018学年八年级数学上学期期中联考试题.doc》由会员分享,可在线阅读,更多相关《江苏省盐城市大丰区2017_2018学年八年级数学上学期期中联考试题.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、江苏省盐城市大丰区2017-2018学年八年级数学上学期期中联考试题注意事项: 1本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷 2本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分 3答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上一、选择题(本大题共有6小题,每小题3分,共18分)1下列图形中,属于全等图形的是( )A. B. C. D. 2 的立方根是( )A. B. C. D. 43如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是 ( )A. B. C. D. (第3题) (第5题) (第6题)4 月 日,新
2、华社电讯:我国利用世界唯一的“蓝鲸 号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采据介绍,“蓝鲸 号”拥有 台设备,约 根管路,约 个MCC报验点,电缆拉放长度估计 千米,其中准确数是 ( )A. B. C. D. 5如图所示,工人师傅砌门时,常用木条 固定长方形门框 ,使其不变形,这种做法的根据是 ( )A. 两点之间线段最短B. 长方形的对称性C. 长方形的四个角都是直角D. 三角形的稳定性 6如图,在四边形 中, 垂直平分 ,垂足为 ,下列结论不一定成立的是 ( )A. B. 平分 C. D. 二、填空题(本大题共10小题,每小题3分,共30分)7近似数 精确到 位8如图,已知
3、 ,则 9如图,直线 垂直平分线段 ,且垂足为 ,则图中全等的三角形有 对 (第8题) (第9题) (第10题)10如图,在 中, 是斜边 的中点,若 ,则 11如图,在 中,、 分别是 和 的平分线,过点 作 交 于 、交 于 ,若 ,则 周长为 12 为等边三角形,、 分别在边 、 上,且 ,则 为 三角形 (第11题) (第12题) (第13题)13如图, 中, 是中线,将 沿 折叠至 ,发现 与折痕的夹角是 ,则点 到 的距离是 14已知 、 是两个连续的整数,且 ,则 15四边形ABCD中,AB=BC=CD=DA=4,点E、F分别在边BC、CD上,CF= BE=3,且B=EAF则AF
4、= 16如图,中,以为边在外作正方形,连接、交于点则线段的最大值是 三、解答题(本大题共有11小题,共102分解答时应写出文字说明、推理过程或演算步骤)17(6分)计算:(1) (2) 18(6分)要使下列木架稳定,可以在任意两个点之间钉上木棍,各至少需要钉上多少根木棍?19(8分)画出 关于直线 的对称图形,标注字母并简要说明20(8分)如图, 与 交于点 ,连接 、,若 ,求 的长21(8分)如图所示, 中, 是 边上一点, 是 的中点,过点 作 的平行线交 的延长线于点 ,且 ,连接 (1)求证:;(2)求证: 是 的中点22(10分)如图,在 的正方形网格中,每个小正方形的顶点称为格点
5、,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形)若再作一个面积相等的格点正方形,并涂上阴影,使这两个格点正方形无重叠(可以有一个点或一条边重合),且与原正方形组成的图形是轴对称图形,请问这个格点正方形的作法共有几种?并在下面两图中分别画出一种 23(10分)请先观察下列等式: , , , (1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式 24(10分)学校准备在旗杆附近用石砖围一个面积为 平方米的花坛方案一:建成正方形;方案二:建成圆形如果请你决策,从节省工料的角度考虑,你选择哪个方案?请说明理由(提示:花坛周长越小越节省工料, 取 ) 25(10分)如图
6、所示,、 分别是 的边 、 上的点,且 ,(1)若 ,则 ;(2)若 ,则 ;(3)设 ,你能由(1)(2)中的结果找到 、 所满足的关系吗?请说明理由 26(12分)如图,在 中,点 从点 沿 方向以 的速度运动至点 ,点 从点 沿 方向以 的速度运动至点 、 两点同时出发(1)求 的长(2)若运动 时,求 、 两点之间的距离(3)、 两点运动几秒时,27(14分)在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知 是线段 所在平面内任意一点,分别以 、 为边,在 同侧作等边 和 ,连接 、 交于点 (1)如图 1,当点 在线段 上移动时,线段 与 的数量关系: (2)如图 2,
7、当点 在直线 外,且 ,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由此时 是否随着 的大小发生变化,若变化写出变化规律,若不变,请写出 的度数,不必说明理由(3)如图 3,在(2)的条件下,以 为边在 另一侧作等边三角形 ,连接 、 和 交于点 求证:若试求的值,只需直接写出结果2017-2018学年度第一学期期中学情调研八年级数学答案一、选择题(本大题共有6小题,每小题3分,共18分)1B2A3B4A5D6C 二、填空题(本大题共10小题,每小题3分,共30分)7十89310511712等边1331491516 三、解答题(本大题共有11小题,共102分解答时应写出文字说明、推
8、理过程或演算步骤)17(6分)解: (1) 3分 (2) 3分18(6分)解:图四边形木架至少需要钉上 根木棍; 2分图五边形木架至少需要钉上 根木棍; 2分图六边形木架至少需要钉上 根木棍 2分19(8分)解:如图所示, 即为所求 8分 20(8分)解: , , , , 4分 , , 在 中 , , 4分 21(8分)解:(1) , 3分(2) 点 为 的中点, 在 和 中, , 3分 又 , 即 是 的中点 2分 22(10分)解:如图,由图易知这个格点正方形的作法共有 种 4分 (只需作出其中两个) 6分 23(10分)解:(1) 6分 (2) ,且 为整数(不必说明条件) 4分24(1
9、0分)解:当形状为正方形时,则 平方米的花坛的边长为 米, 米 3分当形状为圆形时,则 平方米的花坛半径 米, 米 3分 , 选择方案二 4分 25(10分)解:(1) 3分 (2) 3分 (3) 理由如下: 2分因为 ,所以 ,又 ,即 ,得 因为 ,所以 ,所以 ,即 2分 26(12分)解:(1) 在 中, 4分 (2) 如图,连接 , ,在直角 中,由勾股定理得到: 4分 (3) 设 秒时,则 ,解得 答:, 两点运动 秒时, 4分 27(14分)解:(1) 2分 (2) 结论: 成立 2分 和 是等边三角形, , ,即 , 2分结论: 不随着 的大小发生变化,始终是 2分(以下过程不需要学生书写: ,设 与 交于点 , ,即 ) (3) 由(2)同理可得 在 上截取 ,连接 , 为等边三角形 , , , , 3分结果: 3分 15