《2013年全国各市中考题分类汇编(6)-因动点产生的平行四边形问答.doc》由会员分享,可在线阅读,更多相关《2013年全国各市中考题分类汇编(6)-因动点产生的平行四边形问答.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、,因动点产生的平行四边形问题1.如图,在RtABC中,ACB=90,AC=6,BC=8.点D、E、F分别是边AB、BC、AC的中点,连接DE、DF,动点P,Q分别从点A、B同时出发,运动速度均为1/s,点P沿A F D的方向运动到点D停止;点Q沿B C的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为(2)(这里规定线段是面积为0有几何图形),点P运动的时间为(s)(1)当点P运动到点F时,CQ= ;(2)在点P从点F运动到点D的过程中,某一时刻,点P落在M
2、Q上,求此时BQ的长度;(3)当点P在线段FD上运动时,求与之间的函数关系式.2.如图,矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ的中点. 求证:ADPABQ; 若AD10,AB20,点P在边CD上运动,设DPx,y,求y与x的函数关系式,并求线段BM长的最小值;CMDPBAQ 若AD10,ABa,DP8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.3.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,AEP=90,且EP交正方形外角的平分线CP于点P,交边CD于点F
3、,(1)的值为 ;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由4.如图,在ABCD中,AB=13,BC=50,BC边上的高为12点P从点B出发,沿BADA运动,沿BA运动时的速度为每秒13个单位长度,沿ADA运动时的速度为每秒8个单位长度点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动设点P的运动时间为t(秒)连结PQ(1)当点P沿ADA运动时,求AP的长(用含t的代数式表示)(2)连结AQ,在点P沿BAD运动过程中,当点P与点B、点A不重合时,记
4、APQ的面积为S求S与t之间的函数关系式(3)过点Q作QRAB,交AD于点R,连结BR,如图在点P沿BAD运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值(4)设点C、D关于直线PQ的对称点分别为C、D,直接写出CDBC时t的值5.如图,抛物线经过三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;xyAOCB(第26题图)(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.6.如图,矩形OABC在平面直角坐标系xoy中,
5、点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D。(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由。 7.如图,在平面直角坐标系xOy中,抛物线y(xm)2m2m的顶点为A,与y轴的交点为B,连结AB,ACAB,交y轴于点C,延长CA到点D,使ADAC,连结BD作AEx轴,DEy轴(1)当m2时,求点B的坐标;(2)求DE的长?(3)设点D的坐标为(x,y),求y关于x的函数关
6、系式?过点D作AB的平行线,与第(3)题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形? 8.如图坐标系xOy中,ABC是等腰直角三角形,BAC=90,A(1,0),B(0,2),抛物线y=x2+bx2的图象过C点(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l当l移动到何处时,恰好将ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由9.如图,已知抛物线经过A(-8,0),B(2,0)两点,直线交轴于点C,交抛物线于点D. (1)求该抛物线的解析式
7、;(2)点P在抛物线上,点E在直线上,若以A,O,E,P为顶点的四边形是平行四边形,求点P的坐标;(3)若B,D,C三点到同一条直线的距离分别是,问是否存在直线l,使?若存在,请直接写出的值;若不存在,请说明理由. 10.综合与探究:如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q(1)求点A,B,C的坐标。(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形C
8、QBM的形状,并说明理由。(3)当点P在线段EB上运动时,是否存在点 Q,使BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。11.如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,)直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DEy轴于点E探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PNA
9、D于点N,设PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值12.如图1所示,已知y=(x0)图象上一点P,PAx轴于点A(a,0),点B坐标为(0,b)(b0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C(1)如图2,连接BP,求PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)当点Q在线段BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长13.如图,在平面直角坐标系中,RtAB
10、C的斜边AB在x轴上,点C在y轴上,ACB=90,OA、OB的长分别是一元二次方程x225x+144=0的两个根(OAOB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DEOB,垂足为E(1)求点C的坐标(2)连接AD,当AD平分CAB时,求直线AD的解析式(3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由14.如图,平面直角坐标系中,矩形OABC的对角线AC=12,tanACO=,(1)求B、C两点的坐标;(2)把矩形沿直线DE对折使点C落在点A处,DE与AC相交于点F,求
11、直线DE的解析式;(3)若点M在直线DE上,平面内是否存在点N,使以O、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由15.如图,平面直角坐标系中,直线L分别交轴、轴于A、B两点(OAOB),且OA、OB的长分别是一元二次方程的两个根.点C在轴负半轴上,且AB:AC=1:2.(1) 求A、C两点的坐标.(2) 若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围.(3) 点P是轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,
12、请直接写出Q点的坐标;若不存在,说明理由.16.如图,已知直线y=x+1与x轴交于点A,与y轴交于点B,将AOB绕点O顺时针旋转90后得到COD(1)点C的坐标是 线段AD的长等于 ;(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点G,M,求抛物线的解析式;(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由17.如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点,点P是直线BC下方抛物线上的一
13、个动点(1)求二次函数解析式;(2)连接PO,PC,并将POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;ABOPyx第25题图2(备用)ABOPyx第25题图1(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积. C18如图,在直角梯形AOCB中,ABOC,AOC=90,AB=1,AO=2,OC=3,以O为原点,OC、OA所在直线为轴建立坐标系抛物线顶点为A,且经过点C点P在线段AO上由A向点O运动,点O在线段OC上由C向点O运动,QDOC交BC于点D,OD所在直线与抛物线在第一象限
14、交于点E(1)求抛物线的解析式;(2)点E是E关于y轴的对称点,点Q运动到何处时,四边形OEAE是菱形?(3)点P、Q分别以每秒2个单位和3个单位的速度同时出发,运动的时间为t秒,当t为何值时,PBOD?19.如图,ABC中,点O是边AC上一个动点,过O作直线MNBC设MN交ACB的平分线于点E,交ACB的外角平分线于点F(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由20.如图,在平面直角坐标系中,直线AB分别与x轴,y轴相交于A,B两点,OA,OB的长分别是方程x214x+48=0的两根,且OAOB(
15、1)求点A,B的坐标(2)过点A作直线AC交y轴于点C,1是直线AC与x轴相交所成的锐角,sin1=,点D在线段CA的延长线上,且AD=AB,若反比例函数y=的图象经过点D,求k的值(3)在(2)的条件下,点M在射线AD上,平面内是否存在点N,使以A,B,M,N为顶点的四边形是邻边之比为1:2的矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由21.如图,已知二次函数的图象过点A(0,3),B(,),对称轴为直线x=,点P是抛物线上的一动点,过点P分别作PMx轴于点M,PNy轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP(1)求此二次函数的解析式;(2
16、)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由22.如图,在平面直角坐标系中,直线AB与轴,轴分别交于点A(6,0),B(0,8),点C的坐标为(0,),过点C作CEAB于点E,点D为轴上一动点,连结CD,DE,以CD,DE为边作CDEF。(1)当08时,求CE的长(用含的代数式表示);(2)当=3时,是否存在点D,使CDEF的顶点F恰好落在轴上?若存在,求出点D的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得CDEF为矩形,请求出
17、所有满足条件的的值。23.如图10,在平面直角坐标系中,一动直线从轴出发,以每秒1个单位长度的速度沿轴向右平移,直线与直线相交于点,以为半径的与轴正半轴交于点,与轴正半轴交于点.设直线的运动时间为秒 (1)填空:当时,的半径为 , , ; (2)若点是坐标平面内一点,且以点、为顶点的四边形为平行四边形.请你直接写出所有符合条件的点的坐标;(用含的代数式表示) 当点在直线上方时,过、三点的与轴的另一个交点为yy点,连接、,试判断的形状,并说明理由.lly=xy=xBBPPxOAxOA(备用图)(图10)24.如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA(1)求点A的坐标和AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C连接OC和AC,把AOC沿OA翻折得到四边形ACOC试判断其形状,并说明理由;(3)在(2)的情况下,判断点C是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由