立体几何中的向量方法用精选文档.ppt

上传人:石*** 文档编号:44685282 上传时间:2022-09-22 格式:PPT 页数:52 大小:3.74MB
返回 下载 相关 举报
立体几何中的向量方法用精选文档.ppt_第1页
第1页 / 共52页
立体几何中的向量方法用精选文档.ppt_第2页
第2页 / 共52页
点击查看更多>>
资源描述

《立体几何中的向量方法用精选文档.ppt》由会员分享,可在线阅读,更多相关《立体几何中的向量方法用精选文档.ppt(52页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、立体几何中的向量方法用本讲稿第一页,共五十二页学习提纲学习提纲二、立体几何问题的类型及解法二、立体几何问题的类型及解法1、判断直线、平面间的位置关系;、判断直线、平面间的位置关系;(1)直线与直线的位置关系直线与直线的位置关系;(2)直线与平面的位置关系直线与平面的位置关系;(3)平面与平面的位置关系平面与平面的位置关系;2、求解空间中的角度;、求解空间中的角度;3、求解空间中的距离。、求解空间中的距离。1、直线的方向向量;、直线的方向向量;2、平面的法向量、平面的法向量。一、引入两个重要空间向量一、引入两个重要空间向量本讲稿第二页,共五十二页一一.引入两个重要的空间向量引入两个重要的空间向量

2、 1.直线的方向向量 把直线上任意两点的向量或与它平行的向量都称为直线的方向向量直线的方向向量.如图,在空间直角坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直线AB的方向向量是zxyAB本讲稿第三页,共五十二页2.平面的法向量如果表示向量n的有向线段所在的直线垂直于平面,称这个向量垂直于平面,记作n,这时向量n叫做平面平面的法向量的法向量.n本讲稿第四页,共五十二页 因为方向向量与法向量可以确定直线和平面因为方向向量与法向量可以确定直线和平面的位置,所以我们应该可以利用直线的方向向量的位置,所以我们应该可以利用直线的方向向量与平面的法向量表示空间直线、平面间的与平面的法向量

3、表示空间直线、平面间的平行、平行、垂直、夹角垂直、夹角等位置关系等位置关系.你能用直线的方向向量表你能用直线的方向向量表示空间两直线平行、垂直的位置关系以及它们之间示空间两直线平行、垂直的位置关系以及它们之间的夹角吗?你能用平面的法向量表示空间两平面平的夹角吗?你能用平面的法向量表示空间两平面平行、垂直的位置关系以及它们二面角的大小吗?行、垂直的位置关系以及它们二面角的大小吗?本讲稿第五页,共五十二页二二.立体几何问题的类型及解法立体几何问题的类型及解法1.判定直线、平面间的位置关系(1)直线与直线的位置关系 不重合的两条直线a,b的方向向量分别为a,b.若ab,即a=b,则ab.若a b,即

4、ab=0,则ababab本讲稿第六页,共五十二页(2)直线与平面的位置关系 直线L的方向向量为a,平面的法向量为n,且L .若an,即a=n,则 L 若a n,即an=0,则a .nanaLL本讲稿第七页,共五十二页(3)平面与平面的位置关系平面的法向量为n1,平面的法向量为n2 若n1n2,即n1=n2,则若n1 n2,即n1 n2=0,则n2n1n1n2本讲稿第八页,共五十二页本讲稿第九页,共五十二页本讲稿第十页,共五十二页3.在空间直角坐标系中,如何求平面法向量的坐标呢?如图,设a=(x1,y1,z1)、b=(x2,y2,z2)是平面内的两个不共线的非零向量,由直线与平面垂直的判定定理知

5、,若n a且n b,则n.换句话说,若na=0且nb=0,则n .abn本讲稿第十一页,共五十二页(1)求平面的法向量的坐标的一般步骤:第一步第一步(设设):设出平面法向量的坐标为n=(x,y,z).第二步(列):根据na=0且nb=0可列出方程组第三步(解):把z看作常数,用z表示x、y.第四步(取):取z为任意一个正数(当然取得越特 殊越好),便得到平面法向量n的坐标.本讲稿第十二页,共五十二页例例1在棱长为2的正方体ABCD-A1B1C1D1中,O是面AC的中心,求面OA1D1的法向量.A AABCDOA1B1C1D1zxy本讲稿第十三页,共五十二页解:以A为原点建立空间直角坐标系O-x

6、yz,设平面OA1D1的法向量的法向量为n=(x,y,z),那么O(1,1,0),A1(0,0,2),D1(0,2,2)得平面OA1D1的法向量的坐标n=(2,0,1).取z=1解得:得:由 =(-1,-1,2),=(-1,1,2)本讲稿第十四页,共五十二页例例2已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,C1CB=C1CD=BCD=,求证:C C1 BDA1B1C1D1CBAD本讲稿第十五页,共五十二页证明:设 a,b,c,依题意有|a|=|b|,于是 a b =c(a b)=ca cb =|c|a|cos|c|b|cos=0 C C1 BD 本讲稿第十六页,共五十二页例例

7、3棱长都等于2的正三棱柱ABC-A1B1C1,D,E分别是AC,CC1的中点,求证:(1)A1E 平面DBC1;(2)AB1 平面DBC1A1C1B1ACBEDzxy本讲稿第十七页,共五十二页解:以D为原点,DA为x轴,DB为y轴建立空间直角坐标系D-xyz.则A(-1,0,0),B(0,0),E(1,0,1),A1(-1,0,2),B1(0,2),C1(1,0,2).设平面DBC1的法向量为n=(x,y,z),则 解之得 ,取z=1得n=(-2,0,1)(1)=-n,从而A1E 平面DBC1(2),而 n=-2+0+2=0AB1 平面DBC1本讲稿第十八页,共五十二页利用向量解决 空间角问题

8、本讲稿第十九页,共五十二页异面直线所成角的范围:思考:思考:结论:结论:题型题型1:线线角:线线角小结小结本讲稿第二十页,共五十二页(2)直线与与平面所成的角若n是平面的法向量,a是直线L的方向向量,设L与所成的角,n与与a所成的角 则 =-或=-于是,nnaa本讲稿第二十一页,共五十二页(3)二面角设n1、n2分别是二面角两个半平面、的法向量,由几何知识可知,二面角-L-的大小与法向量n1、n2夹角相等(选取法向量竖坐标z同号时相等)或互补(选取法向量竖坐标z异号时互补),于是求二面角的大小可转化为求两个平面法向量的夹角,这样可避免了二面角的平面角的作图麻烦.n1n2n1n2本讲稿第二十二页

9、,共五十二页题型三:二面角题型三:二面角二面角的范围:关键:观察二面角的范围关键:观察二面角的范围本讲稿第二十三页,共五十二页1.异面直线所成角:2.直线与平面所成角:3.二面角:关键:观察二面角的范围本讲稿第二十四页,共五十二页例例1如图在正方体ABCD-A1B1C1D1中,M是AB的中点,求对角线DB1与CM所成角的余弦值.BC A MxzyB1C1D1A1CD本讲稿第二十五页,共五十二页解:以A为原点建立如图所示的直角坐标系A-xyz,设正方体的棱长为2,那么 M(1,0,0),C(2,2,0),B1(2,0,2),D(0,2,0),cos=|cos|设DB1与CM所成角为,与 所成角为

10、,于是:本讲稿第二十六页,共五十二页练习1:本讲稿第二十七页,共五十二页所以 与 所成角的余弦值为解:以点C为坐标原点建立空间直角坐标系 如图所示,设 则:所以:本讲稿第二十八页,共五十二页例例2正三棱柱ABC-A1B1C1的底面边长为a,高为 ,求AC1与侧面ABB1A1所成的角。zxyC1A1B1ACBO本讲稿第二十九页,共五十二页解:建立如图示的直角坐标系,则A(,0,0),B(0,0)A1(,0,).C(-,0,)设面ABB1A1的法向量为n=(x,y,z)得 由 ,解得 ,取y=,得n=(3,0),设 与n夹角为夹角为而故:AC1与侧面ABB1A1所成的角大小为30.本讲稿第三十页,

11、共五十二页练习2:在长方体 中,本讲稿第三十一页,共五十二页例例3 在四棱锥S-ABCD中DAB=ABC=90,侧棱SA底面AC,SA=AB=BC=1,AD=2,求二面角A-SD-C的大小.zxyABCDS本讲稿第三十二页,共五十二页解:建立如图所示的空间直角坐标系O-xyz,则 B(1,0,0),C(1,1,0),D(0,2,0),S(0,0,1).设平面SCD的法向量n1=(x,y,z),则由 得 n1=(1,1,2).而面SAD的法向量n2=(1,0,0).于是二面角A-SD-C的大小满足 二面角A-SD-C的大小为 .本讲稿第三十三页,共五十二页练习练习3本讲稿第三十四页,共五十二页设

12、平面本讲稿第三十五页,共五十二页空间向量之应用空间向量之应用3利用空间向量求距离利用空间向量求距离本讲稿第三十六页,共五十二页BAaMNnab一、求异面直线的距离一、求异面直线的距离本讲稿第三十七页,共五十二页nabAB方法指导:作直线a、b的方向向量a、b,求a、b的法向量n,即此异面直线a、b的公垂线的方向向量;在直线a、b上各取一点A、B,作向量AB;求向量AB在n上的射影d,则异面直线a、b间的距离为本讲稿第三十八页,共五十二页例例1在棱长为1的正方体ABCD-A1B1C1D1中,求异面直线AC1与BD间的距离.zxyABCDD1C1B1A1本讲稿第三十九页,共五十二页解:建立如图所示

13、的空间直角坐标系A-xyz,则 A(0,0,0),B(1,0,0),D(0,1,0),C1(1,1,1),设异面直线AC1与BD的公垂线的方向向量n=(x,y,z),则由 ,得 n=(-1,-1,2).,异面直线AC1与BD间的距离本讲稿第四十页,共五十二页zxyABCC1EA1B1练习练习1本讲稿第四十一页,共五十二页zxyABCC1即取x=1,z则y=-1,z=1,所以EA1B1本讲稿第四十二页,共五十二页2.点到平面的距离A为平面外一点(如图),n为平面的法向量,过A作平面的斜线AB及垂线AH.=.于是,点到平面的距离等于平面内外两点的向量和平点到平面的距离等于平面内外两点的向量和平面的

14、法向量的数量积的绝对值与平面的法向量模的比面的法向量的数量积的绝对值与平面的法向量模的比值值.nABH本讲稿第四十三页,共五十二页例例2 在直三棱柱ABC-A1B1C1中,AA1=,AC=BC=1,ACB=90,求B1到面A1BC的距离.zxyCC1A1B1AB本讲稿第四十四页,共五十二页解:以C为原点建立空间直角坐标系C-xyz,则 C(0,0,0),A1(1,0,),B(0,1,0),B1(0,1,).设面A1BC的法向量n=(x,y,z),由 得 n=(-,0,1).,或 ,或 ,可见,选择平面内外两点的向量时,与平面内的点选择无关.本讲稿第四十五页,共五十二页练习练习2、已知正方形、已

15、知正方形ABCD的边长为的边长为4,CG平面平面ABCDABCD,CG=2,ECG=2,E、F F分别是分别是ABAB、ADAD的中点,求点的中点,求点B B到平面到平面GEFGEF的距离。的距离。DABCGFExyz本讲稿第四十六页,共五十二页DABCGFExyz本讲稿第四十七页,共五十二页例3、已知正方形ABCD的边长为4,CG平面ABCD,CG=2,E、F分别是AB、AD的中点,求直线BD到平面GEF的距离。DABCGFExyz三、求直线与平面间距离本讲稿第四十八页,共五十二页正方体正方体AC1棱长为棱长为1,求,求BD与平面与平面GB1D1的距离的距离A1B1C1D1ABCDXYZ练习

16、练习3:G本讲稿第四十九页,共五十二页 例例4、正方体、正方体AC1棱长为棱长为1,求平面,求平面AD1C与与平面平面A1BC1的距离的距离A1B1C1D1ABCDXYZ四、求平面与平面间距离四、求平面与平面间距离本讲稿第五十页,共五十二页练习4、在边长为1的正方体ABCD-A1B1C1D1中,M、N、E、F分别是棱A1B1、A1D1、B1C1、C1D1的中点,求平面AMN与平面EFDB的距离。ABCDA1B1C1D1MNEFxyz本讲稿第五十一页,共五十二页小结:小结:1 1、怎样利用向量求距离?、怎样利用向量求距离?点到平面的距离:点到平面的距离:连结该点与平面上任意一点的向量在平面定向法

17、向量点与平面上任意一点的向量在平面定向法向量上的射影(上的射影(如果不知道判断方向,可取其射影的如果不知道判断方向,可取其射影的绝对值)。)。点到直线的距离:点到直线的距离:求出垂线段的向量的模。求出垂线段的向量的模。直线到平面的距离:直线到平面的距离:可以转化为点到平面的距离。可以转化为点到平面的距离。平行平面间的距离:平行平面间的距离:转化为直线到平面的距离、点到平面的距离。转化为直线到平面的距离、点到平面的距离。异面直线间的距离:异面直线间的距离:转化为直线到平面的距离、点到平面的距离。也可转化为直线到平面的距离、点到平面的距离。也可运用闭合曲线求公垂线向量的模或共线向量定理和公垂线段定义求出公运用闭合曲线求公垂线向量的模或共线向量定理和公垂线段定义求出公垂线段向量的模。垂线段向量的模。本讲稿第五十二页,共五十二页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁