电站锅炉金属材料基础精选文档.ppt

上传人:石*** 文档编号:44682885 上传时间:2022-09-22 格式:PPT 页数:40 大小:1.91MB
返回 下载 相关 举报
电站锅炉金属材料基础精选文档.ppt_第1页
第1页 / 共40页
电站锅炉金属材料基础精选文档.ppt_第2页
第2页 / 共40页
点击查看更多>>
资源描述

《电站锅炉金属材料基础精选文档.ppt》由会员分享,可在线阅读,更多相关《电站锅炉金属材料基础精选文档.ppt(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、电站锅炉金属材料基础本讲稿第一页,共四十页电站锅炉金属材料基础知识一、金属学及热处理基本知识 金属学基本概念 金属学就是研究金属和合金的性能与它们内部结构之间的关系,以及影响金属与合金组织和性能的因素的一门科学。铁的几种基本固态相 铁、铁、铁、铁。在钢中晶界的重要特性 晶界比晶粒容易被腐蚀;晶界的熔点比晶粒低;当金属内部发生相变时,晶界是优先成核的部位;原子在晶界上扩散比晶粒内快;晶界对晶粒的滑移变形起阻碍作用,晶界不易产生塑性变形;晶界处容易聚集与晶粒元素不同的其他杂质元素的原子。本讲稿第二页,共四十页本讲稿第三页,共四十页 等强温度T 晶界强度和晶粒强度相等时的温度称为等强温度T。金属材料

2、的塑性变形及再结晶 加工硬化:金属在塑性变形后,金属的强度和硬度会升高,塑性和 韧性会降低,这种现象称为加工硬化(或冷作硬化)。再结晶过程:当温度升高时,变形金属的冷变形组织(被拉长的晶 粒)逐渐回复到原来的晶粒形状,金属性能恢复到原来 的性能的过程称为再结晶过程。钢及铸铁中的几种基本组织 铁素体:碳和其它合金元素在 铁中的固溶体称为铁素体。以F表 示。渗碳体:渗碳体是铁和碳的化合物,或以化合物为基体的固溶体,以Fe3C表示。电站锅炉金属材料基础知识本讲稿第四页,共四十页本讲稿第五页,共四十页 奥氏体:奥氏体是碳和其它元素在铁(面心立方晶格)中的固 溶体,以A表示。珠光体:珠光体是铁素体和渗碳

3、体以彼此相间片层状排列的机械 混合物,以P表示。索氏体:索氏体即是片层较细的珠光体,以S表示。屈氏体(或托氏体):屈氏体(或托氏体)即是片层极细的珠光 体,以T表示。贝氏体:贝氏体是铁素体和渗碳体的机械混合物,按照组织形式 和形成温度不同,分为上贝氏体和下贝氏体。上贝氏体 中铁素体呈羽毛状,羽毛之间分布有片装和棒状的渗碳 体。下贝氏体为针状的铁素体上分布有大量的渗碳体。贝氏体中的铁素体含有较多的(或过饱和的)碳,以B表 示。马氏体:碳在铁素体中的过饱和固溶体,以M表示。电站锅炉金属材料基础知识本讲稿第六页,共四十页 莱氏体:莱氏体是一种机械混合物,在高温时由奥氏体和渗碳体 组成,在常温时由奥氏

4、体转变得到的珠光体加渗碳体组 成,以L表示。石墨:石墨是碳以六方柱状形式的结晶状态。石墨在钢中的可以 以三种形状存在,即片状(花瓣状)、雪花状、球状。其 中以片状对金属的危害最大。铁碳平衡图 平衡图也叫相图或状态图,是表示合金体系在平衡状态时各相区温度和成分极限的图解。一般最常用的平衡图是二元系的平衡图。二元系的平衡图以纵坐标表示温度,横坐标表示合金的成分。知道了合金的成分和温度,就可以在平衡图上找到相应的平衡状态下的组织,并可用杠杆定律求出两相区相的相对量。从平衡图上也可以知道一定成分的合金在冷却过程中相的变化。电站锅炉金属材料基础知识本讲稿第七页,共四十页本讲稿第八页,共四十页铁碳平衡图中

5、的特性点 点的符号温度()含碳量()说明A15340纯铁的熔点B14930.51包晶反应时液态合金的浓度C11474.3共晶点D16006.67渗碳体的熔点E11472.06碳在铁中的最大溶解度F11476.67渗碳体G9100铁铁同素异形转变点H14930.10碳在铁中的最大溶解度J14930.16包晶点K7236.67渗碳体M7690磁性转变点N13900铁铁同素异形转变点O7690.5磁性转变点P7230.02碳在铁中的最大溶解度S7230.8共析点Q1000.008碳在铁中的溶解度本讲稿第九页,共四十页 铁碳平衡图是铁和碳的二元系相图。严格来说,铁碳平衡图应当是铁和石墨的平衡图。而我们

6、应用最多的是含碳量6.67以下的富铁部分平衡图,而且是铁和化合物Fe3C 的一种平衡图。因此,虽然铁碳平衡图有Fe C和Fe Fe3C两种,但实际上都把Fe Fe3C系的平衡图称为铁碳平衡图。包晶反应:所谓包晶反应即由一个固相和一个液相反应成为一个 固相的反应。共晶反应:所谓共晶反应即由一个液相反应成两个固相的反应。共析反应:所谓共晶反应即由一个固相反应成两个固相的反应。杠杆定律:当测定各相的相对量时,可先通过已知点做水平线,此水平线在该已知点和决定相成分之间的线段长度与 这些相的重量成反比。电站锅炉金属材料基础知识本讲稿第十页,共四十页 钢的热处理 正火:即是将钢加热到Ac3 以上3050,

7、在此温度停留一段时间 后,将钢在静止空气中冷却的一种操作。正火目的:、细化晶粒,改善钢的力学性能,并可作为某些钢 (如20G锅炉管)的最终热处理。、改善组织,以改善切削加工性能,并为淬火做组 织准备。淬火:即是把钢加热到临界点(Ac3 或Ac1)以上某一温度,并在 此温度停留一段时间后,迅速冷却,以得到不稳定状态组 织的一种操作。钢在淬火后一般得到的是马氏体组织,但 对高合金奥氏体钢则淬火后为奥氏体组织。奥氏体钢淬火 也被称为固溶处理或水韧处理。淬火目的:提高钢的强度和硬度。电站锅炉金属材料基础知识本讲稿第十一页,共四十页 回火:即是将淬火后的钢加热到低于Ac1的温度,在此温度停留 一段时间后

8、冷却的一种操作。回火目的:、得到较为稳定的组织。、减小或完全消除钢淬火后存在于钢中的应力,降 低淬火钢的脆性,得到工件所需要的最后的性能。常见的回火类型:、低温回火 回火温度为150250。目的:消除工件中的部分内应力,稍稍提高韧性,但仍使工 件保持着高的淬火硬度。适用范围:高碳钢和合金钢制造的刀具、量具等。、中温回火 回火温度为350480。电站锅炉金属材料基础知识本讲稿第十二页,共四十页 目的:使钢具有较高的弹性和韧性。适用范围:常用于弹簧和热冲模。、高温回火 回火温度为450670(对碳钢或低合金钢)或更高温度 (对中、高合金钢)。目的:完全消除内应力,回火后有足够的强度和良好的韧性。适

9、用范围:广泛用于电站主蒸汽管道焊口的焊后热处理以及 结构钢的最终热处理。退火:钢的退火可分为再结晶退火和退火两种。再结晶退火:即是将冷加工后的工件加热到Ac1以下温度,使冷加 工后的不稳定的变形组织变为稳定的组织状态。这 种退火没有相变发生。电站锅炉金属材料基础知识本讲稿第十三页,共四十页 常见的退火类型:、完全退火 完全退火是将钢加热到Ac3以上,使钢全部变成奥氏体的工 艺。目的:细化晶粒,改善钢的力学性能或为淬火作组织准备;降低钢的硬度以利于加工;消除内应力。适用范围:亚共析钢和共析钢组织的碳钢及合金钢铸件和锻 件。如汽轮机气缸25钢铸件在铸造后即采用完全 退火。、不完全退火 不完全退火与

10、完全退火不同,其加热温度较低,为Ac1 (2030 ),在此温度加热保温后缓慢冷却。电站锅炉金属材料基础知识本讲稿第十四页,共四十页 目的:降低钢的硬度,改善切削性能,并为淬火作组织准备。适用范围:主要用于过共析钢、合金工具钢及轴承钢。这些 钢均是含碳量较高的钢,在不完全退火的加热温 度下,其组织为奥氏体加二次渗碳体(对合金钢 为碳化物)。之所以不采用完全退火工艺的原因 在于,如采用完全退火,钢中所有含碳量均会溶 于奥氏体中,导致奥氏体含碳量的含碳量提高,稳定性加大。如要获得均匀的退火组织,其冷却 速度必须很慢。这样将大为延长退火时间,对生 产不利。另外,对这些刚采用不完全退火,可使 二次渗碳

11、体易于成为球状,对降低钢的硬度并为 淬火组织准备更为有利。电站锅炉金属材料基础知识本讲稿第十五页,共四十页 、扩散退火 扩散退火即是将钢加热到 很高的温度,通常为 Ac3以上 200 左右,保温较长时间,然后缓慢冷却。目的:使钢的成分均匀。适用范围:高合金钢锭或铸件。、等温退火 等温退火即是把钢加热到临界点以上温度,使其转变为奥 氏体,并保温一段时间使奥氏体均匀后,冷却到预定温度,并在该温度下保温一段时间,使奥氏体等温分解成珠光体 的热处理工艺。等温退火的加热温度与完全退火的加热温度一样。二者不 同之处在于冷却方式。这种退火方式可以说是完全退火的 特殊形式。电站锅炉金属材料基础知识本讲稿第十六

12、页,共四十页 目的:组织均匀,硬度较低。适用范围:合金钢。、球化退火 球化退火即是将钢按照完全退火的加热速度加热到Ac1 (2030 ),保温后,再按照每小时2050 的速度降至 该钢Ar1以下一个温度,并在这个温度保温较长时间,最后 随炉冷致450500 左右出炉,再在空气中冷却的工艺。通过这种退火后,珠光体中的渗碳体及钢中的二次渗碳体均 为球状,故称为球化退火。目的:降低硬度,以便于加工,并使钢中的渗碳体变为球 状,以为淬火作好组织准备。电站锅炉金属材料基础知识本讲稿第十七页,共四十页二、金属在高温长期运行过程中的变化 金属的蠕变 金属在高温下,即使其所受的应力低于金属在该温度的屈服点,在

13、这样的应力长期作用下,也会发生缓慢的但是连续的塑性变形,这样的一种现象称为蠕变现象,所发生的变形称为蠕变变形(或 蠕胀)。金属的蠕变曲线 蠕变现象通常用画在“变形时间”坐标上的曲线来表示,这种曲线称为蠕变曲线。尽管不同的金属和合金在不同条件下所得到的蠕变曲线不尽相同,但它们都有一定的共同特征,把这些共同特征表示出来的蠕变曲线就叫做典型蠕变曲线。典型蠕变曲线见附图,它描述在恒定温度、恒定拉应力下金属的变形随时间的变化规律。电站锅炉金属材料基础知识本讲稿第十八页,共四十页 典型蠕变曲线分为以下四个部分:、瞬时伸长0O它是加上应力的瞬间发生的。假如外加应力超过 金属在试验温度下的弹性极限,则这部分瞬

14、时伸长中既包括 弹性变形,也包括塑性变形。、蠕变第一阶段(曲线OA,即 I),这一阶段的蠕变是非稳定 的蠕变阶段,它的特点是开始蠕变速度较大,但随着时间的 推移,蠕变速度逐步减小,到A点,金属的蠕变速度达到该 应力和温度下的最小值并开始过渡到蠕变的第二阶段。由于 这一阶段蠕变有着减速的特点,因此也把蠕变第一阶段称为 蠕变的减速阶段。、蠕变的第二阶段(曲线AB,即 II),这一阶段的蠕变是稳 定阶段的蠕变,它的特点是蠕变以固定的但是对于该应力和 温度下是最小的蠕变速度进行,在蠕变曲线上表现为一具有 一定倾斜角度的直线段。蠕变第二阶段又称为蠕变的等速阶 段或恒速阶段。电站锅炉金属材料基础知识本讲稿

15、第十九页,共四十页 、蠕变的第三阶段(曲线BC,即 III),当蠕变进行到B点,随 着时间的进行,蠕变以迅速增大的速度进行,这是一种失稳 状态。直到C点发生断裂。至此,整个蠕变过程结束。由于蠕 变第三阶段有蠕变不断加速的特点,所以也被称为蠕变的加速 阶段。一般认为,在正常的使用条件下,高温金属部件的使用期限应当在蠕变第三阶段发生以前。长期以来,人们总是把蠕变第二阶段终了时的蠕变变形量作为金属在使用时的极限变形量。但考虑到蠕变第三阶段的时间与总的时间相比,占的比例较大,因此,对于电站的某些高温部件,例如主蒸汽管道,它们的允许变形量并不受外界条件的限制(与某些部件因机械结构的公差的限制不允许变形量

16、很大是有区别的),而是由金属本身的变性能力所支配,对于这样的高温金属部件,认为它们只能使用到第二阶段终了时的看法是值得商榷的。电站锅炉金属材料基础知识本讲稿第二十页,共四十页本讲稿第二十一页,共四十页 金属的蠕变极限 金属的蠕变极限是这样一个应力,在这个应力下,金属在一定温度下于规定时间内产生规定的总的塑性变形量;或者在这个应力下,金属在某一温度下引起规定的蠕变速度。对于火力发电厂的高温金属部件,蠕变极限作以下具体规定:、在 一 定 温 度 下,能 使钢 材 产 生 1107毫米/毫米时 (或1105/时)的第二阶段蠕变速度的应力,就 称为 该 温度下1107(或1105)的蠕变极限。所用符号

17、为 t1107(或 t1105)。、在 一 定 温 度 下,能 使钢 材 在105小时工作时间内发生1 的总蠕变变形量的应力,就称为该温度下的105小时变形1 的蠕变极限。所用符号为 t1/105 电站锅炉金属材料基础知识本讲稿第二十二页,共四十页 金属的持久强度 金属材料的持久强度和蠕变极限一样,是评定在高温和应力下长期使用的部件金属材料的强度指标。由于金属持久强度试验一直要进行到试样的断裂,所以它可以反映金属材料在高温长时断裂时的强度和塑性。金属的持久强度是指在给定温度下经过一定时间破坏时所能承受的应力。金属的持久强度也称持久强度极限。火力发电厂高温金属部件所用材料的持久强度一般可表示为:

18、在给定温度下,经105小时发生破坏(或断裂)的应力。其常用符号为 t105 电站锅炉金属材料基础知识本讲稿第二十三页,共四十页 金属的松弛 金属在高温和应力状态下,如维持总变形不变,随着时间的延长,应力逐渐降低的现象叫应力松弛。松弛过程可以用一个数学表达式来表示,当温度为常数时:0 p e 常数 式中:0 松弛开始时金属所具有的开始的总变形;p 塑性变形 e 弹性变形 松弛过程中,0 常数,p 常数,e 常数。即由于总变形量不变,而其中的弹性变形转变为塑性变形,因而零件中的应力随时间而降低。因此,金属的松弛过程就是金属在高温下弹性变形自动转变为塑性变形的过程。电站锅炉金属材料基础知识本讲稿第二

19、十四页,共四十页本讲稿第二十五页,共四十页 金属在高温长期运行过程中组织的变化 无论奥氏体钢或珠光体钢,在高温下长期运行,不但会发生蠕变、断裂和应力松弛等形变过程,而且还会发生一些组织和性能的变化。锅炉、汽轮机高温部件所用钢材在高温长期运行过程中发生的组织性能变化主要有:珠光体的球化和碳化物的聚集;石墨化(仅限于不含铬的珠光体耐热钢);时效和新相的形成(如不锈钢中 相的形成等);热脆性;合金元素在固溶体中和碳化物相之间的重新分配。等等。电站锅炉金属材料基础知识本讲稿第二十六页,共四十页 珠光体的球化和碳化物的聚集 这是所有珠光体耐热钢最常见的组织变化。珠光体球化是指钢中原来的珠光体中的片层状渗

20、碳体(在合金钢中称合金渗碳体或碳化物)在高温下长期运行,逐步改变自己的形状而成为球状的现象。球化后的碳化物继续增大自己的尺寸,使小直径的球变成大直径的球,这就是碳化物的聚集。珠光体的球化对钢的性能的影响 一般来说,珠光体球化对钢的室温力学性能和耐热性均有一定程度的影响,对于不同的钢,其影响程度不一。、珠光体球化会使钢的室温强度极限和屈服点降低。、珠光体球化会使钢的蠕变极限和持久强度降低。电站锅炉金属材料基础知识本讲稿第二十七页,共四十页 石墨化 石墨化就是钢中的渗碳体分解成为游离碳并以石墨形式析出,在钢中形成石墨夹层的现象。碳钢和0.5Mo钢等不含铬的珠光体耐热钢在高温长期运行过程中会产生石墨

21、化的现象。石墨化对钢的性能的影响 当钢中产生石墨化现象时,由于碳从渗碳体中析出成为石墨,钢中渗碳体数量减少;另外,石墨在钢中割裂基体,起裂纹作用,而石墨本身强度又极低,因此,石墨化对钢的强度有所影响。另外,由于钢的室温冲击性能也有一定的影响。电站锅炉金属材料基础知识本讲稿第二十八页,共四十页 时效和新相的形成 耐热钢或耐热合金的时效过程是指它们在长期运行过程中,随着运行时间的推移而从组织中过饱和固溶体内析出一些强化相质点而使金属的性能随时间发生变化的现象。当耐热钢和耐热合金中的固溶体由于热处理时从高温冷却较快或别的原因,使固溶于其中的合金元素来不及析出时,就形成不稳定的过饱和固溶体。在以后的运

22、行中就会发生时效。时效可分为三个阶段。第一阶段是时效过程在金属晶格内的准备阶段,它仅有一些物理性能如电阻等的变化,在此阶段钢和合金的强度和硬度几乎不发生变化;第二阶段在组织上析出了分散的强化相质点,使钢的强度、硬度和蠕变极限提高,并使塑性、韧性降低;在时效随第三阶段,是这些析出的分散相的聚集。由于这些细小的、分散的质点聚集成大的质点,因而强化作用消失,强度、硬度降低,同时,蠕变极限和持久强度也显著降低。时效过程也就是新相形成的过程,因为析出的分散相也就是在金属中形成的新相。电站锅炉金属材料基础知识本讲稿第二十九页,共四十页 合金元素在固溶体和碳化物相之间的重新分配 钢在高温长期作用下,不但会发

23、生珠光体球化、石墨化、时效等,钢中合金元素还会发生在固溶体和碳化物相之间的重新分配过程。这一过程的发生是由于在高温下合金元素原子活动能力的增加而产生的转移过程。目前,火力发电厂用的最多的是珠光体耐热钢和马氏体耐热钢。在这些钢中,归根到底只有两种相:固溶体和碳化物。钢中的合金元素不是存在于固溶体中,就是存在于碳化物中。当形成固溶体时,合金元素的原子是要溶入到铁的晶格中去的。合金元素的原子直径是与铁原子的直径不同的,因而形成固溶体时要产生晶格畸变,有畸变的晶格是不稳定的。因此,在高温长期作用下,只有温度水平能使合金元素原子有充分的活动能力,它就力求从固溶体中出来转移到较为稳定的碳化物中去。这种过程

24、也叫做固溶体的贫化。固溶体的贫化会使钢的强度、蠕变极限和持久强度下降。电站锅炉金属材料基础知识本讲稿第三十页,共四十页 合金元素在固溶体和碳化物相之间的重新分配过程包括两个方面:一为固溶体、碳化物中合金含量的变化(即称为碳化物成分的变化),二为运行过程中同时发生的碳化物结构类型、数量 和发布形式的变化。电站锅炉金属材料基础知识本讲稿第三十一页,共四十页三、金属力学性能试验基本知识 金属材料的力学性能是金属材料在外力作用下表现出来的特性,如弹性、强度、硬度、韧性、塑性等。不同的受力条件会使金属材料表现出不同的特性,如静力拉伸力作用下金属材料的强度和塑性特性,动力负荷即冲击负荷下金属材料所表现出来

25、的韧性特性指标等。静力试验下的力学性能 静力试验的意义是,向试样上加力(负荷、载荷)的速度是缓慢而均匀的,或者是以固定不变的力加在试样上并保持很长的时间。显然,在静力试验时,试样的变形速度不大。拉伸试验 在拉伸试验时,可以得到以下力学性能的指标:电站锅炉金属材料基础知识本讲稿第三十二页,共四十页 、抵抗微小的塑性变形的能力 这种性能常常用比例极限p和屈服点s来说明。、抵抗大的塑性变形的能力 这种性能常常用强度极限b来说明。、塑性 试样在断裂时的塑性变形的大小,这种性能常常用延伸率和断面收缩率来说明。拉伸曲线 在对金属拉伸试样进行拉伸试验时,可以得到一条画在负荷伸长量坐标上的曲线,这就是拉伸曲线

26、。图中负荷与伸长量之间能保持直线关系的最大负荷称为比例极限负荷Pp;金属能保持虎克定律的最大负荷称为弹性极限负荷Pe(比例极限负荷和弹性极限负荷在位置上非常接近);Ps称为屈服负荷,金属在这个负荷下开始屈服(即不增加负荷,变形也能自动增加);PB称为最大负荷;PZ称为断裂负荷。电站锅炉金属材料基础知识本讲稿第三十三页,共四十页本讲稿第三十四页,共四十页 拉伸试验时的力学性能指标:、比例极限p 是指应力和相对伸长成正比例的最大应力。、弹性极限e 是指在不产生永久塑性变形的前提下,金属材料所能承受 的最大应力。在工程上规定,弹性极限是使试样产生0.001 0.05%永久变形的应力。、屈服点s 是指

27、不增加负荷而使试样变形增加的最小应力。有时,在低碳钢做拉伸试验时,在拉伸曲线上屈服时会出 现负荷作锯齿状的一段台阶,可分别用上屈服点和下屈服 点表示。如不特别指明,应认为上屈服点是屈服点。很多的金属或合金,在拉伸曲线上无明显的屈服平台。在 工程上规定,一般将使试样产生0.2%永久变形的应力作为 屈服点,以0.2表示。电站锅炉金属材料基础知识本讲稿第三十五页,共四十页 、强度极限b 试验断裂前最大负荷与原始截面积之比。、真实抗断抗力Z 试验拉断时的负荷与拉断时的试样最小截面积之比。、延伸率 试样拉断后的伸长量与原始计算长度之比。、断面收缩率 试样拉断后的截面积最大收缩量与原始截面积之比。硬度 所

28、谓金属的硬度是指金属抵抗其它比较坚硬物体压入的能力。这种坚硬的压入物通常是不发生变形的。电站锅炉金属材料基础知识本讲稿第三十六页,共四十页 按照试验时所用方法的不同,可将硬度测定方法分为:压入法:试验金属对塑性变形的抵抗能力;划痕法:试验金属对于阻碍断裂的抵抗能力;弹性回跳法:试验金属对弹性变形的抵抗能力。我国常用的几种硬度检测方法 、布氏法 布氏硬度是将一定直径的淬火钢球在一定负荷下压入金属的 表面。则布氏硬度为压入负荷与压痕球形面积之比。布氏硬度的优点:由于压痕较大,测得的数据较为精确;另 外,由于布氏硬度的实质也是表示对变形的抗力,故它与金 属强度极限之间存在一定的关系,根据经验公式,此

29、关系表 示为:b KHB 式中K为常数电站锅炉金属材料基础知识本讲稿第三十七页,共四十页 布氏硬度的缺点:钢球一定不高,不能测量硬度超过HB450 的金属;其另一缺点为:压痕面积大,损伤表面,以及不能 测量薄试样的硬度。、洛氏硬度 将一定负荷加于一顶角为120 的金刚石圆锥(用于硬的金属)或直径为1.59毫米的淬火钢球(用于软的金属),使其压入 金属表面,测量其压入深度来得到洛氏硬度。洛氏硬度与布氏硬度的不同在于,洛氏硬度在前后两次施加 载荷(初负荷及总负荷)的作用下将压头压入金属表面,并 在去掉主负荷,留下初负荷让其继续作用的情况下计算其压 入深度。布氏硬度则是在去掉所有负荷后测量其压痕直径

30、。洛氏硬度可用来测量最硬的金属或合金的硬度;由于测量后 在工件表面留下的压痕不大,不至于破坏工件表面,为此可 用来测量成品工件及薄的试件。但由于压痕太小,所以测量 精度不高。电站锅炉金属材料基础知识本讲稿第三十八页,共四十页 、维氏法 维氏硬度是用一相对两面夹角为136 的金刚石正四棱锥形压 头,在一定负荷的作用下,压入被测金属表面。经过规定的 保持负荷时间后,卸除负荷,测量其压痕两对角线长度的平 均值,然后查表或带入公式求得硬度值。维氏硬度所采用的负荷小,压痕小,适用于金属、合金及其 表面层的硬度测量。电站锅炉金属材料基础知识本讲稿第三十九页,共四十页电站锅炉金属材料基础知识 动力试验下的力学性能 冲击韧性 冲击韧性表示金属材料对冲击负荷的抵抗能力,它是衡量材料韧性的指标。可以认为,冲击韧性是综合性地概括了材料的塑性性能和强度性能。冲击韧性ak等于撞断带缺口的标准方形截面试样 在其单位面积上所消耗的功。本讲稿第四十页,共四十页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁