《电子科技,电磁场与电磁波,典型例题精选文档.ppt》由会员分享,可在线阅读,更多相关《电子科技,电磁场与电磁波,典型例题精选文档.ppt(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、电子科技,电磁场与电磁波,典型例题本讲稿第一页,共三十六页解:解:1)1)取如图所示高斯面。取如图所示高斯面。在球外区域:在球外区域:r r a a分析:电场方向垂直于球面。分析:电场方向垂直于球面。电场大小只与电场大小只与r r有关。有关。半径为半径为a a的球形带电体,电荷总量的球形带电体,电荷总量Q Q均匀分布在球体内。均匀分布在球体内。求求:(:(1 1)(2 2)(3 3)在球内区域:在球内区域:r r a a例例本讲稿第二页,共三十六页2 2)解为球坐标系下的表达形式。)解为球坐标系下的表达形式。3 3)本讲稿第三页,共三十六页 半径为半径为a a的球形电介质体,其相对介电常数的球
2、形电介质体,其相对介电常数 ,若在球心处存在一点电荷若在球心处存在一点电荷Q Q,求极化电荷分布。,求极化电荷分布。解:由高斯定律,可以求得解:由高斯定律,可以求得在媒质内:在媒质内:体极化电荷分布体极化电荷分布:面极化电荷分布面极化电荷分布:在球心点电荷处:在球心点电荷处:例例本讲稿第四页,共三十六页 在线性均匀媒质中,已知电位移矢量在线性均匀媒质中,已知电位移矢量 的的z z分量为分量为 ,极化强度,极化强度 求:介质中的电场强度求:介质中的电场强度 和电位移矢量和电位移矢量 。解:由定义,知:解:由定义,知:例例本讲稿第五页,共三十六页半径为半径为a a的带电导体球,已知球体电位为的带电
3、导体球,已知球体电位为U U,求空间电位分布及电场强度分布。求空间电位分布及电场强度分布。解法一:导体球是等势体。解法一:导体球是等势体。时:时:例例时:时:本讲稿第六页,共三十六页解法二:电荷均匀分布在导体球上,呈点对称。解法二:电荷均匀分布在导体球上,呈点对称。设导体球带电总量为设导体球带电总量为Q Q,则可由高斯定理求得,在球外空间,电场强度为:,则可由高斯定理求得,在球外空间,电场强度为:本讲稿第七页,共三十六页 同轴线内导体半径为同轴线内导体半径为a a,外导体半径为外导体半径为b b。内外导体间内外导体间充满介电常数分别为充满介电常数分别为 和和 的两种理想介质,分界面半径为的两种
4、理想介质,分界面半径为c c。已知外导体接地,内导体电压为已知外导体接地,内导体电压为U U。求求:(1):(1)导体间的导体间的 和和 分布;分布;(2)(2)同轴线单位长度的电容同轴线单位长度的电容分析:电场方向垂直于边界,由边界条件可知,分析:电场方向垂直于边界,由边界条件可知,在媒质两边在媒质两边 连续连续解:设内导体单位长度带电量为解:设内导体单位长度带电量为由高斯定律,可以求得两边媒质中,由高斯定律,可以求得两边媒质中,例例 本讲稿第八页,共三十六页本讲稿第九页,共三十六页 球形电容器内导体半径为球形电容器内导体半径为a a,外球壳半径为外球壳半径为b b。其间充满介电其间充满介电
5、常数为常数为 和和 的两种均匀媒质。设内导体带电荷为的两种均匀媒质。设内导体带电荷为q q,外球壳接地,求球外球壳接地,求球壳间的电场和电位分布。壳间的电场和电位分布。分析:电场平行于介质分界面,由边界条件可知,分析:电场平行于介质分界面,由边界条件可知,介质两边介质两边 相等。相等。解:令电场强度为解:令电场强度为 ,由高斯定律,由高斯定律例例 本讲稿第十页,共三十六页 同轴线填充两种介质,结构如图所示。两种介质同轴线填充两种介质,结构如图所示。两种介质介电常数分别为介电常数分别为 和和 ,导电率分别为,导电率分别为 和和 ,设同轴线内,设同轴线内外导体电压为外导体电压为U U。求:求:(1
6、)(1)导体间的导体间的 ,;(2)(2)分界面上自由电荷分布。分界面上自由电荷分布。解:这是一个恒定电场边值问题。不能直接应用高斯定理解:这是一个恒定电场边值问题。不能直接应用高斯定理求解。求解。设单位长度内从内导体流向外导体电流为设单位长度内从内导体流向外导体电流为I I。则:则:由边界条件,边界两边电流连续。由边界条件,边界两边电流连续。例例 由导电媒质内电场本构关系,可知媒质内电场为:由导电媒质内电场本构关系,可知媒质内电场为:本讲稿第十一页,共三十六页本讲稿第十二页,共三十六页2 2)由边界条件:)由边界条件:在在 面上:面上:在在 面上:面上:在在 面上:面上:本讲稿第十三页,共三
7、十六页 平行双线,导线半径为平行双线,导线半径为a a,导线轴线距离为,导线轴线距离为D D 求:平行双线单位长度的电容。(求:平行双线单位长度的电容。(aD)aD)解:设导线单位长度带电分别为解:设导线单位长度带电分别为 和和 ,则,则易于求得,在易于求得,在P P点处,点处,导线间电位差为:导线间电位差为:例例 本讲稿第十四页,共三十六页计算同轴线内外导体间单位长度电容。计算同轴线内外导体间单位长度电容。解:设同轴线内外导体单位长度带电量分别为解:设同轴线内外导体单位长度带电量分别为 和和 ,则内外导体间电场分布为:,则内外导体间电场分布为:则内外导体间电位差为:则内外导体间电位差为:内外
8、导体间电容为:内外导体间电容为:例例 本讲稿第十五页,共三十六页由边界条件知在边界两边由边界条件知在边界两边 连续。连续。解:设同轴线内导体单位长度带电量为解:设同轴线内导体单位长度带电量为 同轴线内外导体半径分别为同轴线内外导体半径分别为a,ba,b,导体间部分填充介质,介质,导体间部分填充介质,介质介电常数为介电常数为 ,如图所示。已知内外导体间电压为,如图所示。已知内外导体间电压为U U。求:导体间单位长度内的电场能量。求:导体间单位长度内的电场能量。例例 本讲稿第十六页,共三十六页两种方法求电场能量:两种方法求电场能量:或应用导体系统能量求解公式或应用导体系统能量求解公式本讲稿第十七页
9、,共三十六页 已知同轴线内外导体半径分别为已知同轴线内外导体半径分别为a,ba,b,导体间填充介质,介质介电,导体间填充介质,介质介电常数为常数为 ,导电率为,导电率为 。已知内外导体间电压为。已知内外导体间电压为U U。求:内外导体间的求:内外导体间的 1 1);2 2);3 ;3);4 ;4);5 ;5);6 ;6)分析:为恒定电场问题。分析:为恒定电场问题。电荷只存在于导体表面,故可用静电场高斯定理电荷只存在于导体表面,故可用静电场高斯定理求解。求解。解法一:应用高斯定理求解。解法一:应用高斯定理求解。设内导体单位长度电量为设内导体单位长度电量为 则则例例 本讲稿第十八页,共三十六页本讲
10、稿第十九页,共三十六页解法二:间接求解法解法二:间接求解法由于内外导体间不存在电荷分布,电位方程为由于内外导体间不存在电荷分布,电位方程为本讲稿第二十页,共三十六页解法三:恒定电场方法求解解法三:恒定电场方法求解令由内导体流向外导体单位长度总电流强度为令由内导体流向外导体单位长度总电流强度为I I,则,则本讲稿第二十一页,共三十六页 导体球壳,内径为导体球壳,内径为b b,外径为,外径为c c,球壳球心为半径为,球壳球心为半径为a a导体球,导导体球,导体球带电量体球带电量Q,Q,中间充满两种介质,介电系数分别为中间充满两种介质,介电系数分别为1 1和和2 2,介质分界面,介质分界面如图所示。
11、如图所示。求:(求:(1 1)空间场分布)空间场分布E(r)E(r);(2 2)空间电位分布;)空间电位分布;(3 3)电容;)电容;(4 4)系统电场能量。)系统电场能量。解:由边界条件知,解:由边界条件知,连续。连续。(1 1)rara,该区域为导体空间,故:,该区域为导体空间,故:=0=0;a a rbrb,由高斯定理有,由高斯定理有例例 Q本讲稿第二十二页,共三十六页b b rcrcrc,(2 2)求电位分布。)求电位分布。rcrc,arbarb,ra,ra,brcbrara时时 当当rara时时 例题例题 半径为半径为a a的无限长直导体内通有电流的无限长直导体内通有电流I I,计算
12、空间磁场强度,计算空间磁场强度 分布分布本讲稿第二十五页,共三十六页 例题例题 内、外半径分别为内、外半径分别为a a、b b的无限长中空导体圆柱,导体内沿轴向有恒定的的无限长中空导体圆柱,导体内沿轴向有恒定的均匀传导电流,体电流密度为均匀传导电流,体电流密度为 导体磁导率为导体磁导率为 。求空间各点的磁感应强度。求空间各点的磁感应强度分析:电流均匀分布在导体截面上,呈轴对称分布。分析:电流均匀分布在导体截面上,呈轴对称分布。解:根据安培环路定律解:根据安培环路定律 在在rara区域:区域:在在arbarbrb区域:区域:本讲稿第二十六页,共三十六页 所以,空间中的所以,空间中的 分布为:分布
13、为:本讲稿第二十七页,共三十六页 例例 无限长线电流位于无限长线电流位于z z轴,介质分界面为平面,轴,介质分界面为平面,求空间的求空间的 分布和磁化电流分布。分布和磁化电流分布。分析:电流呈轴对称分布。可用安培环路定律求解。磁场分析:电流呈轴对称分布。可用安培环路定律求解。磁场方向沿方向沿 方向。方向。解:磁场方向与边界面相切,由边界条件知,在分界解:磁场方向与边界面相切,由边界条件知,在分界面两边,面两边,连续而连续而 不连续。不连续。由安培环路定律:由安培环路定律:介质磁化强度为:介质磁化强度为:本讲稿第二十八页,共三十六页体磁化电流为:体磁化电流为:面磁化电流为:面磁化电流为:在介质内
14、在介质内r=0r=0位置,还存在磁化线电流位置,还存在磁化线电流I Im m。由安培环路定律,有:。由安培环路定律,有:也由电流守恒的关系求磁化线电流也由电流守恒的关系求磁化线电流本讲稿第二十九页,共三十六页分析:内导体为粗导体,故内导体存在内自感。因分析:内导体为粗导体,故内导体存在内自感。因此同轴线自感由同轴线内自感和内外导体间互感组此同轴线自感由同轴线内自感和内外导体间互感组成。成。解:设同轴线内导体载流为解:设同轴线内导体载流为I I,则由安培环路定律,知,则由安培环路定律,知 例例 求同轴线单位长度的自感。设同轴线内径为求同轴线单位长度的自感。设同轴线内径为a a,外径为,外径为b
15、b,内外导体间为真空。导体磁导率为,内外导体间为真空。导体磁导率为同轴线单位长度自感由内导体内自感和内外导体互感构成。即:同轴线单位长度自感由内导体内自感和内外导体互感构成。即:本讲稿第三十页,共三十六页 如图,在内导体内取一长为单位长度,宽为如图,在内导体内取一长为单位长度,宽为drdr的矩的矩形面元,则通过该面元的磁通为:形面元,则通过该面元的磁通为:令与令与 所交链的电流为所交链的电流为I I,可知可知 若将整个内导体电流看作若将整个内导体电流看作1 1匝,则与匝,则与 交链的电流为交链的电流为 由磁链定义,知与由磁链定义,知与 对应的磁链为:对应的磁链为:整个内导体单位长度的内磁链为整
16、个内导体单位长度的内磁链为本讲稿第三十一页,共三十六页 故内导体单位长度的内自感为故内导体单位长度的内自感为 易求得,内外导体间单位长度磁链为:易求得,内外导体间单位长度磁链为:本讲稿第三十二页,共三十六页 例例 求双传输线单位长度自感。设导线半径为求双传输线单位长度自感。设导线半径为a a,导线间距为,导线间距为D D。(Da)(Da)分析:导线为细导线,故只需考虑导体间的互感。分析:导线为细导线,故只需考虑导体间的互感。解:由安培环路定律,可以求得在导体间磁感应解:由安培环路定律,可以求得在导体间磁感应强度分布:强度分布:则导体间单位长度的磁通量为则导体间单位长度的磁通量为本讲稿第三十三页
17、,共三十六页例例 求半径为求半径为a a的无限长直导线单位长度内自感。的无限长直导线单位长度内自感。解:设导体内电流为解:设导体内电流为I I,则由安培环路定律,则由安培环路定律则导体内单位长度磁能为则导体内单位长度磁能为本讲稿第三十四页,共三十六页试求:(试求:(1 1)磁场强度)磁场强度 ;(;(2 2)导体表面的电流密度)导体表面的电流密度 。解:解:(1)将表示为复数形式,有)将表示为复数形式,有由复数形式的麦克斯韦方程,得磁由复数形式的麦克斯韦方程,得磁场的复数形式场的复数形式例例:在两导体平板(在两导体平板(和和 )之间的空气中,已知电场强度)之间的空气中,已知电场强度本讲稿第三十五页,共三十六页磁场的瞬时表达式为磁场的瞬时表达式为处导体表面的电流密度为处导体表面的电流密度为(2)处导体表面的电流密度为处导体表面的电流密度为本讲稿第三十六页,共三十六页