数据仓库与数据挖掘.docx

上传人:飞**** 文档编号:44382301 上传时间:2022-09-21 格式:DOCX 页数:45 大小:5.44MB
返回 下载 相关 举报
数据仓库与数据挖掘.docx_第1页
第1页 / 共45页
数据仓库与数据挖掘.docx_第2页
第2页 / 共45页
点击查看更多>>
资源描述

《数据仓库与数据挖掘.docx》由会员分享,可在线阅读,更多相关《数据仓库与数据挖掘.docx(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1. 技术瓶颈:海量数据收集、海量数据存储、海量数据多维分析等一系列的问题,即使最热门最被业内人士看好的Hadoop技术能否撑得住?2. 资源投入:海量数据处理伴随着相应的硬件、软件需求的增长,技术人员的投入上对企业势必成为新的负担。3. 价值金矿:海量数据中的非结构化数据蕴含着的“价值金矿”,能够帮助企业从未所触及的角度和维度为企业提供商业决策和辅助。从海量数据价值挖掘层面上看,传统的思维是数据量加大是一定要考虑OLAP的,一般的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此从一般意义上认为处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多

2、维数据集进行报表展现和数据挖掘等。然而目前OLAP存在的最大问题是: 业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube重新定义并重新生存,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统称为死板的日常报表系统.在思达商业智能平台 Style Intelligence上进行海量数据的多维数据分析,从业务需求的角度出发,维度和度量才是直接针对业务人员的分析语言。在自主知识产权数据块儿技术支持下,直接把维度和度量的生成交给业务人员,由业务人员自己定义好维度和度量之后,将业务的维度和度量直接运行,并最终生成报表。此种以终为始的设计思路,首先能解决传统OLAP分析中维度难以改变的问题,利用思达商业智能平台 Style Intelligence中数据非结构化的特征,业务人员可以灵活地改变问题分析的角度,对业务人员非常友善。其次思达商业智能平台Style Intelligence 在海量数据处理中利用分布式数据处理架构强大的分布式数据处理能力,无论OLAP分析中的维度增加多少,系统开销并不显著增长。、

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁