《2009年高考试题——数学理(四川卷)word版doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2009年高考试题——数学理(四川卷)word版doc--高中数学 .doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网20092009 年普通高等学校招生全国统一考试(四川卷)年普通高等学校招生全国统一考试(四川卷)数数 学学(理工农医科)(理工农医科)第第卷卷本试卷共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。参考公式:参考公式:如果事件AB,互斥,那么球的表面积公式24SR()()()P ABP AP B其中R表示球的半径如果事件AB,相互独立,那么球的体积公式343VR()()()P A BP A P B其中R表示球的半径一、选择题:1.设集合2|5,|4210,Sx xTx xx则ST.
2、|75xx .|35xx.|53xx.|75xx.已知函数22log(2)()24(22axxf xxxxx当时在点处当时)连续,则常数a的值是.w.w.w.k.s.5.u.c.o.m.复数2(12)34ii的值是.i.i4.已知函数()sin()()2f xxxR,下面结论错误的是w.w.w.k.s.5.u.c.o.mA.函数()f x的最小正周期为2B.函数()f x在区间0,2上是增函数C.函数()f x的图像关于直线0 x 对称D.函数()f x是奇函数5.如 图,已 知 六 棱 锥PABCDEF的 底 面 是 正 六 边 形,,2PAABC PAAB平面,则下列结论正确的是http:
3、/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网.PBAD.平面PABPBC 平面w.w.w.k.s.5.u.c.o.mC.直线BC平面PAE.PDABC直线与平面所成的角为456.已知,a b c d为实数,且cd。则“ab”是“acbd”的A.充分而不必要条件B.必要而不充分条件w.w.w.k.s.5.u.c.o.mC充要条件D.既不充分也不必要条件7.已知双曲线2221(0)2xybb的左右焦点分别为12,F F,其一条渐近线方程为yx,点0(3,)Py在该双曲线上,则12PFPF =A.12B.2C.0D.4w.w.w.k.s.5.u.c.o.m8.如图,在半径为 3 的球面上有
4、,A B C三点,90,ABCBABC,球心O到平面ABC的距离是3 22,则BC、两点的球面距离是A.3B.C.43D.2w.w.w.k.s.5.u.c.o.m9.已知直线1:4360lxy和直线2:1lx ,抛物线24yx上一动点P到直线1l和直线2l的距离之和的最小值是A.2B.3C.115D.3716w.w.w.k.s.5.u.c.o.m10.某企业生产甲、乙两种产品,已知生产每吨甲产品要用 A 原料 3 吨、B 原料 2 吨;生产每吨乙产品要用 A 原料 1 吨、B 原料 3 吨。销售每吨甲产品可获得利润 5 万元,每吨乙产品可获得利润 3 万元,该企业在一个生产周期内消耗 A 原料
5、不超过 13 吨,B 原料不超过 18 吨,那么该企业可获得最大利润是w.w.w.k.s.5.u.c.o.mA.12 万元B.20 万元C.25 万元D.27 万元w.w.w.k.s.5.u.c.o.m11.3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是A.360B.228C.216D.96w.w.w.k.s.5.u.c.o.m12.已知函数()f x是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有(1)(1)()xf xx f x,则5()2f f的值是w.w.w.k.s.5.u.c.o.mhttp:/ 永久免费
6、组卷搜题网http:/ 永久免费组卷搜题网A.0B.12C.1D.52w.w.w.k.s.5.u.c.o.m2009 年普通高等学校招生全国统一考试(四川卷)年普通高等学校招生全国统一考试(四川卷)数数 学(理科)学(理科)第第卷卷考生注意事项:考生注意事项:请用 0.5 毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效二、填空题:本大题共二、填空题:本大题共 4 小题,每小题小题,每小题 4 分,共分,共 16 分把答案填在题中横线上分把答案填在题中横线上13.61(2)2xx的展开式的常数项是(用数字作答)w.w.w.k.s.5.u.c.o.m14.若221:5Oxy与222:
7、()20()OxmymR相交于 A、B 两点,且两圆在点 A处的切线互相垂直,则线段 AB 的长度是w.w.w.k.s.5.u.c.o.m15.如图,已知正三棱柱111ABCABC的各条棱长都相等,M是侧棱1CC的 中 点,则 异 面 直 线1ABBM和所 成 的 角 的 大 小是。w.w.w.k.s.5.u.c.o.m16 设V是 已 知 平 面M上 所 有 向 量 的 集 合,对 于 映 射:,f VV aV,记a的象为()f a。若映射:f VV满足:对所有,a bV及任意实数,都有()()()fabf af b,则f称为平面M上的线性变换。现有下列命题:设f是平面M上的线性变换,则(0
8、)0fw.w.w.k.s.5.u.c.o.m对,()2aVf aa设,则f是平面M上的线性变换;w.w.w.k.s.5.u.c.o.m若e是平面M上的单位向量,对,()aVf aae设,则f是平面M上的线性变换;设f是平面M上的线性变换,,a bV,若,a b共线,则(),()f af b也共线。其中真命题是(写出所有真命题的序号)三、解答题:本大题共三、解答题:本大题共 6 小题,共小题,共 74 分解答应写出文字说明、证明过程或演算步骤分解答应写出文字说明、证明过程或演算步骤17.(本小题满分 12 分)在ABC中,,A B为锐角,角,A B C所对应的边分别为,a b c,且310cos
9、2,sin510ABhttp:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网(I)求AB的值;(II)若21ab,求,a b c的值。18.(本小题满分 12 分)为振兴旅游业,四川省 2009 年面向国内发行总量为 2000 万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有 36 名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客。在省外游客中有13持金卡,在省内游客中有23持银卡。(I)在该团中随机采访 3 名游客,求恰有 1 人持金卡且持银卡者少于 2 人的概率;(II)在该团的省内游客中随机采
10、访 3 名游客,设其中持银卡人数为随机变量,求的分布列及数学期望E。19(本小题满分 12 分)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂 直,ABE是等 腰直角 三角形,,45ABAE FAFEAEFhttp:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网(I)求证:EFBCE 平面;(II)设线段CD的中点为P,在直线AE上是否存在一点M,使得PMBCE平面?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由;(III)求二面角FBDA的大小。20(本小题满分 12 分)已知椭圆2221(0)xyabab的左右焦点分别为12,F F,离心率22e,右
11、准线方程为2x。(I)求椭圆的标准方程;(II)过点1F的直线l与该椭圆交于,M N两点,且222 263F MF N,求直线l的方程。21.(本小题满分 12 分)已知0,1aa且函数()log(1)xaf xa。(I)求函数()f x的定义域,并判断()f x的单调性;http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网(II)若()*,lim;f nnnanNaa求(III)当ae(e为自然对数的底数)时,设()2()(1)(1)f xh xexm,若函数()h x的极值存在,求实数m的取值范围以及函数()h x的极值。22.(本小题满分 14 分)设 数 列 na的 前n项
12、 和 为nS,对 任 意 的 正 整 数n,都 有51nnaS成 立,记*4()1nnnabnNa。(I)求数列 nb的通项公式;(II)记*221()nnncbbnN,设数列 nc的前n项和为nT,求证:对任意正整数n都有32nT;(III)设数列 nb的前n项和为nR。已知正实数满足:对任意正整数,nn Rn恒成立,求的最小值。数学(理工农医类)参考答案数学(理工农医类)参考答案http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网一、一、选择题:本体考察基本概念和基本运算。每小题选择题:本体考察基本概念和基本运算。每小题 5 分,满分分,满分 60 分。分。(1)C(2)B(3
13、)A(4)D(5)D(6)B(7)C(8)B(9)A(10)D(11)B(12)A二、填空题:本题考查基础知识和基本运算。每小题二、填空题:本题考查基础知识和基本运算。每小题 4 分,满分分,满分 16 分。分。(13)-20(14)4(15)90(16)三、解答题三、解答题(17)本小题主要考查同角三角函数间的关系,两角和差的三角函数、二倍角公式、正弦定理等基础知识及基本运算能力。解:()A、B为锐角,10sin10B,23 10cos1 sin10Bb又23cos21 2sin5AA,5sin5A,22 5cos1 sin5AA,2 53 105102cos()coscossinsin51
14、05102ABABAB0AB4AB6 分()由()知34C,2sin2C.由正弦定理sinsinsinabcABC得5102abc,即2ab,5cb21abQ,221bb,1b2,5ac12 分(18)本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考察运用概率只是解决实际问题的能力。解:()由题意得,省外游客有 27 人,其中 9 人持金卡;省内游客有 9 人,其中 6 人持银卡。设事件B为“采访该团 3 人中,恰有 1 人持金卡且持银卡者少于 2人”,事件1A为“采访该团 3 人中,1 人持金卡,0 人持银卡”,事件2A为“采访该团 3 人中,1 人持金卡,1
15、人持银卡”。http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网12()()()P BP AP A121119219621333636C CC C CCC927341703685所以在该团中随机采访 3 人,恰有 1 人持金卡且持银卡者少于 2 人的概率是3685。6 分()的可能取值为 0,1,2,333391(0)84CPC,1263393(1)14C CPC21633915(2)28C CPC,363915(3)21CPC,所以的分布列为0123P1843141528521所以131550123284142821E ,12 分(19)本小题主要考察平面与平面垂直、直线与平面垂
16、直、直线与平面平行、二面角等基础知识,考察空间想象能力、逻辑推理能力和数学探究意识,考察应用向量知识解决数学问题的能力。解法一:()因为平面ABEF平面ABCD,BC 平面ABCD,平面ABEF 平面ABCDAB,所以BC平面ABEF所以BCEF.因 为ABE为 等 腰 直 角 三 角 形,ABAE,所以45AEB又因为45AEF,所以454590FEB,http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网即EFBEB,所以EF平面BCE。4 分()存在点M,当M为线段 AE 的中点时,PM平面BCE取 BE 的中点 N,连接 AN,MN,则 MN12ABPC所以 PMNC 为平行
17、四边形,所以 PMCN因为 CN 在平面 BCE 内,PM 不在平面 BCE 内,所以 PM平面 BCE8 分()由 EAAB,平面 ABEF平面 ABCD,易知,EA平面 ABCD作 FGAB,交 BA 的延长线于 G,则 FGEA。从而,FG平面 ABCD作 GHBD 于 G,连结 FH,则由三垂线定理知,BDFH因此,AEF 为二面角 F-BD-A 的平面角因为 FA=FE,AEF=45,所以AFE=90,FAG=45.设 AB=1,则 AE=1,AF=22.FG=AFsinFAG=12在 RtFGH 中,GBH=45,BG=AB+AG=1+12=32,GH=BGsinGBH=3222=
18、3 24在 RtFGH 中,tanFHG=FGGH=23故二面角 F-BD-A 的大小为 arctan23.12 分解法二:()因为ABE 为等腰直角三角形,AB=AE,所以 AEAB.又因为平面 ABEF平面 ABCD,AE平面 ABEF,平面 ABEF平面 ABCD=AB,所以 AE平面 ABCD.所以 AEAD.因此,AD,AB,AE 两两垂直,以 A 为坐标原点,建立如图所示的直角坐标系 A-xyz.设 AB=1,则 AE=1,B(0,1,0),D(1,0,0),E(0,0,1),C(1,1,0).因为 FA=FE,AEF=45,所以AFE=90.http:/ 永久免费组卷搜题网htt
19、p:/ 永久免费组卷搜题网从而,1 1(0,)2 2F.所以1 1(0,)2 2EF ,(0,1,1)BE ,(1,0,0)BC .110022EFBE ,0EFBC .所以 EFBE,EFBC.因为 BE平面 BCE,BCBE=B,所以 EF平面 BCE.()存在点 M,当 M 为 AE 中点时,PM平面 BCE.M(0,0,12),P(1,12,0).从而PM=1 1(1,)2 2,于是PM EF=1 1(1,)2 2 11(0,)22=0所以 PMFE,又 EF平面 BCE,直线 PM 不在平面 BCE 内,故 PMM平面 BCE.8 分()设平面 BDF 的一个法向量为1n,并设1n=
20、(x,y,z).110BD(,)uuu v,3 102 2BF(,)uuu v11n0n0BDBFuv uuu vguv uuu vg即xy031yz022取 y=1,则 x=1,z=3。从而1n113(,)。取平面 ABD 的一个法向量为2n (0,0,1)。12212n n33 11cos(n,n)1111 1nn1uv uu vu u v uu vguv uu vg。故二面角 FBDA 的大小为 arccos3 1111。12 分(20)本小题主要考查直线、椭圆、平面向量等基础知识,以及综合运用数学知识解决问题及推理运算能力。解:()有条件有2c2a2a2c,解得a2c=1,。22bac
21、1。http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网所以,所求椭圆的方程为22xy12。4 分()由()知1(1,0)F、210F(,)。若直线 l 的斜率不存在,则直线 l 的方程为 x=-1.将 x=-1 代入椭圆方程得2y2。不妨设2(1,)2M、212N(,),2222(2,)(2,)(4,0)22F MF N uuuu vuuuv.224F MF Nuuuu vuuuv,与题设矛盾。直线 l 的斜率存在。设直线 l 的斜率为 k,则直线的方程为 y=k(x+1)。设11(xy)M,、22(,)N xy,联立22xy12y=k(x+1),消 y 得2222(12)422
22、0kxk xk。由根与系数的关系知2122412kxxk,从而121222(2)12kyyk xxk,又211(1,)F Mxy,222(1,)F Nxy,221212(2,)F MF Nxxyy。222221212(2)()F MF Nxxyy 22222822()()1212kkkk42424(1691)441kkkk422424(1691)2 26()4413kkkk。化简得424023170kkhttp:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网解得2217140kk 或者1.11klyxyx 所求直线 的方程为或者(21)本小题主要考查函数、数列的极限、导数应用等基础知识
23、、考查分类整合思想、推理和运算能力。解:()由题意知10 xa当01()01()0af xaf x时,的定义域是(,);当时,的定义域是(,)lnlog11aaegxxxx-aaf(x)=aa当01(0,).10,0,xxaxaa 时,因为故f(x)0,因为 n 是正整数,故 0a41n41,41nnRnn 即()对一切大于 1 的奇数 n 恒成立4,41n 否则,()只对满足14n的正奇数 n 成立,矛盾。另一方面,当4时,对一切的正整数 n 都有4nRn事实上,对任意的正整数 k,有212212558(4)1(4)1nnkkbb5208(16)1(16)4kk15 164088(161)(164)kkk当 n 为偶数时,设*2()nm mN则1234212()()()nmmRbbbbbbK84mn当 n 为奇数时,设*21()nmmNhttp:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网则1234232221()()()nmmmRbbbbbbbK8(1)4844mmn对一切的正整数 n,都有4nRn综上所述,正实数的最小值为 4.14 分w.w.w.k.s.5.u.c.o.m