考研数学精选例题.doc





《考研数学精选例题.doc》由会员分享,可在线阅读,更多相关《考研数学精选例题.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、这道题目的条件很明显,闭区间上连续,开区间上可导,第一反应应该就是中值定理了中值定理有三个,那么该用哪个呢?回一下就可以发现,三个中值定理都只会出现一个参数,但是题目中却出现了两个参数,。那么怎么办?这个时候就应该知道仅仅一个中值定理是解决不了此题的,所以考虑使用两个中值定理来做!那么,到底该使用哪两个中值定理呢?一般来说,中值定理的混用有3种,两个拉格朗日,一个拉格朗日一个柯西,两个柯西。具体问题就要具体分析了。所以对这道题目,我们有必要对式子进行变形,从中发现线索!不知道大家看出来我变形的目标没有-就是将同一个参数集中在一堆,然后f放在分子,具体函数(在这道题中就是cosx与sinx)放在
2、分母。从这种形式,我们很容易看出来,这应该是柯西中值定理的应用左边f()/sin就可以看做柯西中值定理的右边部分,这样一来,我们只需要把分子分母的原函数找出来,然后用柯西中值定理处理就可以出现我们结论中的东西了。同理,右边的f()/cos也可以再用一个柯西中值定理处理。注意,这里左边就应该取端点值a,b,因为表达式里面还含有a,b。至于那个tan((a+b)/2)可以暂时不管,先分别用柯西中值定理处理后然后再看看是否能够出现那个式子,如果出现不了的话才考虑其他的,能够出现,命题基本上可以说是得证了!于是下面就是解答过程看来,只要将用两个柯西中值定理想出来了,后面的就是水道渠成了。那个tan((
3、a+b)/2)也是自然而然就出现了。最后总结一下这道题。从这道题我们能够学到哪些东西?首先,通过条件的分析,知道很可能使用中值定理,这是整体把握此题,让自己有个大致的方向。然后就是对题目的分析了。处理一个变量的中值定理的证明题,一般都是利用分析法,也就是通过条件倒推,最后看出需要构造什么样的辅助函数。而处理两个变量及以上也是分析法,不过往往是对结构的分析了。一般步骤就是先将同一个变量放在一起,然后看看那个中值定理的形式和此相同,即可决定使用那个中值定理了。也就是说,这种多变量的中值定理证明题的突破口就在变量上面,做适当变形,分析出条件的使用。至于那些常数(比如这道题里面的tan((a+b)/2
4、))完全可以不管,因为往往你将变量的来源分析清楚了,做一下处理,就可以得到这些常数了!为了帮大家熟悉一下这类题型,我又找了几道题,大家自己练习下,如果哪道题不会的,跟帖提出来。我可以帮你分析下思路。三道题的难度是递增的,希望大家多多思考!题目3是一道积分不等式的证明,是李永乐或者陈文灯书上都可以找到的题目。其中方法很典型,里面的一些技巧也是证明题中常用的,所以我把这道题弄出来进行剖析,将自己的思路展现给大家看看。拿到这道题目,大家可能都有点傻眼了。怎么表达式这么复杂?!而且绝对值,积分号,求导号让人眼花缭乱,感觉根本不知道从何下手。我们不妨先从三个独立的表达式分析起走。第一个表达式首先要明白这
5、个式子说的是什么东西。读懂表达式,是你做证明题的根本!不难看出,这个式子说的就是|f(x)|的在区间a,b的最大值。写的这么高深,弄得大家心里发慌,其实根本就是一只纸老虎嘛!我们并不关心最大值在哪一点取得,所以我们可以把取得最大值的这一点设为,则这个式子可以化成|f()|.你看,这样一简化,是不是显得更加简洁和舒服,让自己的信心也增加了不少。第二个表达式这个式子对积分熟悉一点的看见了就应该有一种很强烈的反应,就是积分中值定理!所以这个式子我们也可以简化一下成|f()|.这样一来,不但大大简化了表达式,而且成功的与第一个表达式联系了起来!这样对题目的认知也就在简化中一点一点的清晰化了!第三个表达
6、式这个表达式相对于前面两个来说要复杂一些,因为它没有很好的化简方式。所以我们只有暂且不管这个表达式,把它作为一个常量,摆在那里,考虑去处理表达式1,2,使得能够得到表达式3!为此,我们将表达式1和表达式2放在一起,于是移项,得到下面不等式,也就是我们需要证明的!注意到左边两个式子|f()| -|f()|,看见这个,然后考虑到这是一道不等式的题目,并且,都是未知的一个数,我们应该立即联想到放缩,用什么放缩?绝对值不等式!|x|-|y|=|x-y|,然后逻辑方向(也就是不等式的方向)也是正确的,所以放心大胆的做吧!如此一来,我们便可以一口气做下去了。于是得到下面的解答!|最后需要再多说两句的就是放
7、缩的后期有一步非常经典注意到没有,第一步的那个等号是这道题里面最难也是最精华的部分。反用牛顿-莱布尼茨公式。成功将积分和导数联系在了一起,破解了这个看似超级复杂的证明题!后面的就是定积分的基本性质虽然这个式子平时看起来觉得再熟悉简单不过了,可是真正使用的时候还是不简单的。最后对这个题目打一个小结,这道题到底让我们学到了哪些知识和思想方法。知识1:积分中值定理,在某些时候可以简化表达式知识2:绝对值不等式以及定积分里面的绝对值不等式知识3:牛顿-莱布尼茨公式的逆用考察的知识不难,关键如何将这些知识串联起来,这是需要不断训练的,当然,通过平时练习多总结多思考,就是提高的最快路径了!思想方法1:对证
8、明的式子需要有个宏观把握,能简化的要简化,这样便于你看清楚整个题目间的关系。思想方法2:不等式证明中间肯定有放缩,这个时候需要找出一定放缩的方法,而且更重要的是判断放缩的方向是否正确,如果正确才可继续往下做。思想方法3:对公式的逆用。有些时候我们做题做多了,往往对有些公式只会顺着用,反过来如何用未曾或者很少想过。其实,像这种难度较大的不等式,往往有一定的思想方法在里面,通过这道题目,我们也学习到了牛顿莱布尼茨公式逆用的威力。可以联系积分与导数!总而言之,这道题目难度不小,不过也不是天马行空的,仔细琢磨,会发现里面有很多思想是值得学习借鉴的!最后选了一道题目,供大家练习这道题看上去就比较容易入手
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 数学 精选 例题

限制150内