《安徽省马鞍山市2018届高三数学第一次期末考试教学质量检测试题理含解析.doc》由会员分享,可在线阅读,更多相关《安徽省马鞍山市2018届高三数学第一次期末考试教学质量检测试题理含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2018年马鞍山市高中毕业班第一次教学质量监测理科数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合,则下列结论正确的是( )A. B. C. D. 【答案】A【解析】 ,且,故选A.2. 已知复数满足,则的共轭复数在复平面内对应的点在( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D【解析】 , 的共轭复数在复平面内对应点坐标为,的共轭复数在复平面内对应的点在第四象限,故选D.3. 已知平面向量,且,则( )A. B. C. D. 10【答案】C【解析】 ,故选C.4. 设,则的值是( )A
2、. B. C. D. 【答案】A【解析】 ,故选A.5. 已知圆与抛物线的准线相切,则的值是( )A. 0 B. 2 C. 或1 D. 0或2【答案】D【解析】的准线方程为的圆心到的距离为圆相切,或,故选D.6. 执行下面的程序框图,若输出结果为273,则判断框处应补充的条件可以为( )A. B. C. D. 【答案】B【解析】试题分析:经过第一次循环得到;经过第二次循环得到;经过第三次循环得到;此时,需要输出结果,此时的满足判断框中的条件,故选B考点:程序框图7. 某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1300万元,在此基础上,每年投入的科研经费比
3、上一年增长,则该高校全年投入的科研经费开始超过2000万元的年份是( )(参考数据:, )A. 2020年 B. 2021年 C. 2022年 D. 2023年【答案】B【解析】若年是第一年,则第年科研费为,由,可得,得,即年后,到年科研经费超过万元,故选B.8. 已知函数的部分图象如图所示,则将的图象向左平移个单位后,得到的图象对应的函数解析式为( )A. B. C. D. 【答案】C【解析】由图知,得,由最大值为,得,将代入可得,向左平移,可得,故选C.9. 已知一个圆锥的侧面展开图是半径为2的半圆,则该圆锥的外接球的表面积是( )A. B. C. D. 【答案】C【解析】设圆锥底面半径为
4、,则底面周长等于半圆周,圆锥轴截面为边长为的正三角形,圆锥外接球球心是正三角形中心,外接球半径是正三角形外接圆半径,球表面积为,故选C.10. 函数的大致图象是( )A. B. C. D. 【答案】D【解析】因为,所以函数是奇函数,图象关于原点对称,可排除 ;由,可排除 ,故选D.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题. 这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11
5、. 如图,网格纸上的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为( ) A. B. C. D. 【答案】B【解析】由三视图可知,该多面体是底面为棱长为的正方形,一条长为的侧棱与底面垂直的四棱锥 ,四条底棱为,四条侧棱分别为,故最长棱长为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,
6、对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.12. 若一个四面体的四个侧面是全等的三角形,则称这样的四面体为“完美四面体”,现给出四个不同的四面体,记的三个内角分别为,其中一定不是“完美四面体”的为( )A. B. C. D. 【答案】B【解析】若,由正弦定理可得,设,因为“完美四面体”的四个侧面是全等的三角形, ,把该四面体顶点当成长方体的四个顶点,四条棱当作长方体的四条面对角线,则长方体面上对角线长为,设长方体棱长为,则,以上方程组无解,即这样的四面体不存在,四个侧面不全等,故一定不是完美的四面体,故选B. 【方法点睛】本题考查四面体的性质以及长
7、方体的性质、新定义问题,属于难题. 新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题通过定义“完美四面体”达到考查四面体的性质以及长方体的性质的目的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知样本容量为200,在样本的频率分布直方图中,共有个小矩形,若中间一个小矩形的面积等于其余个小矩
8、形面积和的,则该组的频数为_.【答案】50【解析】设个小矩形面积和为,则中间小矩形面积的,根据直方图的性质可得,中间一个小矩形的面积等于,即该组的频数为 ,故答案为.14. 若二项式展开式中各项系数的和为64,则该展开式中常数项为_.【答案】15【解析】二项式展开式中各项系数的和为64,令,得的通项为,令,常数项为,故答案为.【方法点晴】本题主要考查二项展开式定理的通项、系数及各项系数和的求法,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系
9、数和和各项的二项式系数和;(3)二项展开式定理的应用.15. 若直线上存在点满足约束条件,则实数的取值范围是_.【答案】【解析】直线上存在点满足约束条件,等价于直线与可行域有交点,画出约束条件表示的可行域,如图,由,得;由,得,直线过定点,由图知,要使直线可行域有交点,则,实数的取值范围是,故答案为.16. 已知双曲线的焦点为,为双曲线上的一点且的内切圆半径为1,则的面积为_.【答案】【解析】如图,设的内切圆与轴相切于实点,根据切线性质及双曲线的定义可得,结合,解得 ,所以的内切圆与轴相切于实轴端点,因为,故,可得,轴,从而双曲线方程中令得 ,故答案为.三、解答题 (本大题共6小题,共70分.
10、解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列的首项为,且,.(1)求证:数列是等差数列;(2)设,求数列的前项和.【答案】(1)见解析(2) 【解析】试题分析:(1)由可得,从而可得数列是以为首项,以为公差的等差数列;(2) 由(1)可知,利用裂项相消法可求得数列的前项和.试题解析:(1),数列是以为首项,以1为公差的等差数列;(2)由(1)可知,.【方法点晴】本题主要考查等差数列的定义与通项公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ;
11、 (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18. 某种产品的质量以其“无故障使用时间 (单位:小时)”衡量,无故障使用时间越大表明产品质量越好,且无故障使用时间大于3小时的产品为优质品,从某企业生产的这种产品中抽取100件,并记录了每件产品的无故障使用时间,得到下面试验结果:无故障使用时间 (小时)频数204040以试验结果中无故障使用时间落入各组的频率作为一件产品的无故障使用时间落入相应组的概率.(1)从该企业任取两件这种产品,求至少有一件是优质品的概率;(2)若该企业生产的这种产品每件销售利润(单位:元)与其无故障使用时间的关系式为从该
12、企业任取两件这种产品,其利润记为(单位:元),求的分布列与数学期望.【答案】(1)0.64(2) (元)【解析】试题分析:(1) 由古典概型概率公式可知,从该企业任取一件这种产品是优质品的概率的是,根据对立事件及独立事件的概率公式即可得到从该企业任取两件这种产品,至少有一件是优质产品的概率;(2) 由题意知,的可能取值为,根据独立事件率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.试题解析:(1)由题意可知,从该企业任取一件这种产品是优质品的概率的是,所以从该企业任取两件这种产品,至少有一件是优质产品的概率为;(2)由题意知,的分布列为010203040所以的数
13、学期望(元).19. 如图,正三棱柱中, ,为棱上靠近的三等分点,点在棱上且面.(1)求的长;(2)求二面角的余弦值.【答案】(1) (2) 【解析】试题分析:(1) 作与交于点,根据线面平行的性质定理可得,于是在平行四边形中,;(2) 取的中点,由(1)知,从而面,于是二面角的平面角为,在直角三角形中,可得二面角的余弦值为.试题解析:(1)如图,作与交于点,面面,面,于是在平行四边形中,.(2)取的中点,是正三棱柱,面,连结,由(1)知,又面,从而面,于是二面角的平面角为,由题,故二面角的余弦值为.20. 已知椭圆经过点,离心率为,过原点作两条直线,直线交椭圆于,直线交椭圆于,且.(1)求椭
14、圆的方程;(2)若直线的斜率分别为,求证:为定值.【答案】(1) (2)见解析【解析】试题分析:(1)根据椭圆经过点,离心率为,结合性质 ,列出关于、 、的方程组,求出、即可得椭圆的方程;(2) 由对称性可知,四边形是平行四边形,设,则,由可得,从而得.试题解析:(1)由题意知,且,解得,椭圆的方程为;(2)由对称性可知,四边形是平行四边形,设,则,由,得,所以,故为定值2.【方法点睛】本题主要考查待定待定系数法椭圆标准方程、椭圆的几何性质以及圆锥曲线的定值问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种: 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关; 直接推理、计
15、算,并在计算推理的过程中消去变量,从而得到定值.21. 已知函数有两个极值点.(1)求实数的取值范围;(2)求证:,其中为自然对数的底数.【答案】(1) (2)见解析【解析】试题分析:(1) 由得,有两个极值点,即方程有两解,即的图象与直线有两个公共点,利用导数研究函数的单调性,结合函数图象即可求得实数的取值范围;(2) ,故只需证明:,等价于,不妨设,并令,利用导数可证明,从而可得结果.试题解析:(1)由得,记,则,当时,当时,在上递增,在上递减,又,时,时,由题,有两个极值点,即方程有两解,即的图象与直线有两个公共点,故.(2),故只需证明:,由,作差得:,因此, ,不妨设,并令,则,在上
16、单调递减,即,即成立,于是原命题得证.22. 在直角坐标系中,曲线的参数方程为(为参数),其中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,为曲线与的交点.(1)当时,求点的极径;(2)点在线段上,且满足,求点的轨迹的直角坐标方程.【答案】(1) (2) 【解析】试题分析:(1) 先求得曲线的极坐标方程是,当时,联立方程组,解得,从而可得点的极径;(2) 点,由题意可得,进而可得,两边同乘以,利用 即可得点的轨迹的直角坐标方程.试题解析:(1)由题意可知,曲线的极坐标方程是,当时,联立方程组,解得,故点的极径为.(2)在极坐标系中,设点,由题意可得,进而可得,从而点的轨迹的直角坐标方程为.23. 已知函数,其中.(1)当时,求不等式的解集;(2)设函数,当时,求的取值范围.【答案】(1) (2) 【解析】试题分析:(1) 当时,解不等式,对分三种情况讨论,分别求解不等式组,然后求并集即可得结果 ;(2) 当时,等价于恒成立;当时,等价于恒成立;当时,等价于,三种情况求解,再求并集即可得的取值范围.试题解析:(1)当时,解不等式,时;时,;不等式总成立,所以得,所以,的解集为.(2)当时,所以当时,等价于恒成立,所以;当时,等价于恒成立,所以;当时,等价于,此时恒成立,所以;综上可得,. - 14 -