《福建省福清市海口镇高中数学第一章集合与函数概念1.3.2奇偶性学案无答案新人教A版必修1.doc》由会员分享,可在线阅读,更多相关《福建省福清市海口镇高中数学第一章集合与函数概念1.3.2奇偶性学案无答案新人教A版必修1.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.3.2奇偶性 班级 姓名 座号 【学习目标】1. 理解函数的奇偶性及其几何意义;2. 学会判断函数的奇偶性;3. 学会运用函数图象理解和研究函数的性质.【自主学习】一、回顾:复习1:指出下列函数的单调区间及单调性. (1); (2)复习2:对于f(x)x、f(x)x、f(x)x、f(x)x,分别比较f(x)与f(x).二、课前预习:预习教材P33 P36,找出疑惑之处三、自学检测【课堂探究】:奇函数、偶函数的概念思考:在同一坐标系分别作出两组函数的图象:(1)、;(2)、. 观察各组图象有什么共同特征?函数解析式在函数值方面有什么特征?新知:一般地,对于函数定义域内的任意一个x,都有,那么
2、函数叫偶函数(even function).试试:仿照偶函数的定义给出奇函数(odd function)的定义.反思: 奇偶性的定义与单调性定义有什么区别? 奇函数、偶函数的定义域关于 对称,图象关于 对称.试试:已知函数在y轴左边的图象如图所示,画出它右边的图象.典型例题例1 判别下列函数的奇偶性:(1); (2);(3); (4).小结:判别方法,先看定义域是否关于原点对称,再计算,并与进行比较.试试:判别下列函数的奇偶性: (1)f(x)|x1|+|x1|; (2)f(x)x;(3)f(x); (4)f(x)x, x-2,3.例2 已知f(x)是奇函数,且在(0,+)上是减函数,判断f
3、(x)的(-,0)上的单调性,并给出证明.变式:已知f(x)是偶函数,且在a,b上是减函数,试判断f(x)在-b,-a上的单调性,并给出证明.小结:设转化单调应用奇偶应用结论. 动手试试练习:若,且,求.【当堂训练】1. 对于定义域是R的任意奇函数有( ).A BCD2.已知是定义上的奇函数,且在上是减函数. 下列关系式中正确的是( )A. B.C. D.3. 下列说法错误的是( ). A. 是奇函数 B. 是偶函数 C. 既是奇函数,又是偶函数D.既不是奇函数,又不是偶函数4. 函数的奇偶性是 .5. 已知f(x)是奇函数,且在3,7是增函数且最大值为4,那么f(x)在-7,-3上是 函数,且最 值为 .【小结与反馈】1. 奇函数、偶函数的定义及图象特征;2. 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质.3. 判断函数奇偶性的方法:图象法、定义法.【拓展练习】1. 已知是奇函数,是偶函数,且,求、.2. 设在R上是奇函数,当x0时, 试问:当0时,的表达式是什么?5