《制氢装置吸附工艺PSA工艺流程.doc》由会员分享,可在线阅读,更多相关《制氢装置吸附工艺PSA工艺流程.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、制氢装置吸附工艺PSA工艺流程在烃类蒸汽催化转化工艺流程中,出变换系统的工艺气中含有大量的气体CO2、CO,除用上述脱碳甲烷化方法脱除外,工业上还可以用PSA,把CO2、CO吸附分离,得到纯度更高的氢气。1.基本原理吸附:是指当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸着、活性吸附、毛细管凝缩、物理吸附。化学吸附是指吸附剂与吸附质间发生有化学反应,并在吸附剂表面生成化合物的吸附过程。其吸
2、附过程一般进行的很慢,且解吸过程非常困难。活性吸附是指吸附剂与吸附质间生成有表面络合物的吸附过程。其解吸过程一般也较困难。毛细管凝缩是指固体吸附剂在吸附蒸气时,在吸附剂孔隙内发生的凝结现象。一般需加热才能完全再生。物理吸附是指依靠吸附剂与吸附质分子间的分子力(即范德华力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的平衡在瞬间即可完成,并且这种吸附是完全可逆的。本装置中的吸附主要为物理吸附。2.吸附剂及吸附力工业PSA制氢装置所用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类。不同的吸附剂由于有不同的孔隙大小分
3、布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。2.1本装置所用吸附剂的特性如下:2.1.1 TL-01TL-01吸附剂为一种物理化学性能极其稳定的高空隙AL2O3,规格为3-5球状,抗磨耗、抗破碎、无毒。对几乎所有的腐蚀性气体和液体均不起化学反应。主要装填在吸附塔底部,用于脱除水分。2.1.2 HXBC-15BHXBC-15B吸附剂是以煤为原料,经特别的化学和热处理得到的孔隙特别发达的专用活性炭。属于耐水型无极性吸附剂,对原料气中几乎所有的有机化合物都有良好的亲和力。本装置所用HXBC-15B活性炭规格为1.5条状,属于一种专门为变换气类提氢设计的改
4、性活性炭,装填于吸附塔中部主要用于脱除二氧化碳和部分甲烷。2.1.3 HX5A-98HHX5A-98H吸附剂为一种具有立方体骨架结构的硅铝酸盐,规格为2-3球状,无毒,无腐蚀性。该吸附剂不仅有着较大的比表面积,而且有着非常均匀的空隙分布,其有效孔径为0.5nm。HX5A-98H属于一种专用的强极性吸附剂,吸附量较高且吸附选择性极佳。装填于吸附塔的上部,用于脱除甲烷、一氧化碳、氮气。2.2吸附剂的处理几乎所有的吸附剂都是吸水的,特别是HX5A-98H具有极强的亲水性,因而在吸附剂的保管和运输过程中应特别注意防潮和包装的完整性。如果吸附剂受潮,则必须作活化处理。对于废弃的吸附剂,一般采用深埋或回收
5、处理。但应注意:在卸取吸附剂时,必须先用氮气进行置换以确保塔内无有毒或爆炸性气体。在正常使用情况下,PSA工段的吸附剂一般是和装置同寿命的。2.3吸附力在物理吸附中,各种吸附剂对气体分子之所以有吸附能力是由于处于气、固相分界面上的气体分子的特殊形态。一般来说,只处于气相中的气体分子所受的来自各方向的分子吸引力是相同的,气体分子处于自由运动状态;而当气体分子运动到气、固相分界面时(即撞击到吸附剂表面时),气体分子将同时受到固相、和气相中分子的引力,其中来自固相分子的引力更大,当气体分子的分子动能不足以克服这种分子引力时,气体分子就会被吸附在固体吸附剂的表面。被吸附在固体吸附剂表面的气体分子又被称
6、为吸附相,其分子密度远大于气相,一般可接近于液态的密度。固体吸附剂表面分子对吸附相中气体分子的吸引力可由以下的公式来描述:分子引力F=C1/rm-C2/rn 其中:C1表示引力常数,与分子的大小、结构有关 C2表示电磁力常数,主要与分子的极性和瞬时偶极矩有关 r表示分子间距离因而对于不同的气体组分,由于其分子的大小、结构、极性等性质各不相同,吸附剂对其吸附的能力和吸附容量也就各不相同。PSA制氢装置所利用的就是吸附剂的这一特性。由于吸附剂对混合气体中的氢组分吸附能力很弱,而对其它组分吸附能力较强,因而通过装有不同吸附剂的混合吸附床层,就可将各种杂质吸附下来,得到提纯的氢气。下图象征性地给出了不
7、同组分在分子筛上的吸附强弱顺序 组分 吸附能力 氦气 弱 氢气 氧气 氩气 氮气 一氧化碳 甲烷 二氧化碳 乙烷 乙烯 丙烷 异丁烷 丙烯 戊烷 丁烯 硫化氢 硫醇 戊烯 苯 甲苯 乙基苯 苯乙烯 水 强3 吸附平衡吸附平衡是指在一定的温度和压力下,吸附剂与吸附质充分接触,最后吸附质在两相中的分布达到平衡的过程。在实际的吸附过程中,吸附质分子会不断地碰撞吸附剂表面并被吸附剂表面的分子引力束缚在吸附相中;同时吸附相中的吸附质分子又会不断地从吸附剂分子或其它吸附质分子得到能量,从而克服分子引力离开吸附相;当一定时间内进入吸附相的分子数和离开吸附相的分子数相等时,吸附过程就达到了平衡。对于物理吸附而
8、言,动态吸附平衡很快就能完成,并且在一定的温度和压力下,对于相同的吸附剂和吸附质,平衡吸附量是一个定值。由于压力越高单位时间内撞击到吸附剂表面的气体分子数越多,因而压力越高平衡吸附容量也就越大;由于温度越高气体分子的动能越大,能被吸附剂表面分子引力束缚的分子就越少,因而温度越高平衡吸附容量也就越小。我们用不同温度下的吸附等温线来描述这一关系,如下图:ADBCP2P1压力V3V2V1V47吸附容量高温常温从上图的BA和CD可以看出:在温度一定时,随着压力的升高吸附容量逐渐增大;从上图的BC和AD可以看出:在压力一定时,随着温度的升高吸附容逐渐减小。吸附剂的这一特性也可以用Langmuir吸附等温
9、方程来描述: (Ai:吸附质i的平衡吸附量, K1、K2: 吸附常数 ,P:吸附压力,Xi:吸附质i的摩尔组成)。在通常的工业变压吸附过程中,由于吸附-解吸循环的周期短(一般只有数分钟),吸附热来不及散失,恰好可供解吸之用,所以吸附热和解吸热引起的吸附床温度变化一般不大,吸附过程可近似看做等温过程,其特性基本符合Langmuir吸附等温方程。本制氢装置的工作原理利用的就是上图中吸附剂在A-B段的特性来实现气体的吸附与解吸的。吸附剂在常温高压(即A点)下大量吸附原料气中除氢以外的杂质组分,然后降低压力(到B点)使各种杂质得以解吸。4.工业吸附分离流程及其相关参数4.1工业吸附分离流程的确定在实际
10、工业应用中,吸附分离一般分为变压吸附和变温吸附两大类。从吸附剂的吸附等温线可以看出,吸附剂在高压下对杂质的吸附容量大,低压下吸附容量小。同时从吸附剂的吸附等压线我们也可以看到,在同一压力下吸附剂在低温下吸附容量大,高温下吸附容量小。利用吸附剂的前一性质进行的吸附分离称为变压吸附(PSA),利用吸附剂的后一性质进行的吸附分离就称为变温吸附(TSA)。在实际工业应用中一般依据气源的组成、压力及产品要求的不同来选择TSA、PSA或TSA+PSA工艺。变温吸附工艺由于需要升温,因而循环周期长、投资较大,但再生彻底,通常用于微量杂质或难解吸杂质的净化;变压吸附工艺的循环周期短,吸附剂利用率高,吸附剂用量
11、相对较少,不需要外加换热设备,被广泛用于大气量多组分气体的分离与纯化。本装置的流程为变压吸附(PSA)流程。在工业变压吸附(PSA)工艺中,吸附剂通常都是在常温和较高压力下,将混合气体中的易吸附组分吸附,不易吸附的组分从床层的一端流出,然后降低吸附剂床层的压力,使被吸附的组分脱附出来,从床层的另一端排出,从而实现了气体的分离与净化,同时也使吸附剂得到了再生。但在通常的PSA工艺中,吸附床层压力即使降至常压,被吸附的杂质也不能完全解吸,这时可采用两种方法使吸附剂完全再生:一种是用产品气对床层进行“冲洗”,将较难解吸的杂质冲洗下来,其优点是常压下即可完成,但缺点是会多损失部分产品气;另一种是利用抽
12、真空的办法进行再生,使较难解吸的杂质在负压下强行解吸下来,这就是通常所说的真空变压吸附(Vacuum Pressure Swing Adsorption,缩写为VPSA或VSA)。VPSA工艺的优点是再生效果好,产品收率高,但缺点是需要增加真空泵。在实际应用过程中,究竟采用以上何种工艺,主要视原料气的组成条件、流量、产品要求以及工厂的资金和场地等情况而决定。由于本装置原料气压力较高,解吸气需用作燃气,因而采用冲洗方式再生。4.2工艺条件与吸附能力的关系4.2.1原料气组成吸附塔的处理能力与原料气组成的关系很大。原料气中氢含量越高时,吸附 塔的处理能力越大;原料气杂质含量越高,特别是净化要求高的
13、有害杂质含量越高时,吸附塔的处理能力越小。4.2.2原料气温度原料气温度越高,吸附剂的吸附量越小,吸附塔的处理能力越低。4.2.3吸附压力原料气的压力越高,吸附剂的吸附量越大,吸附塔的处理能力越高。4.2.4解吸压力解吸压力越低,吸附剂再生越彻底,吸附剂的动态吸附量越大,吸附塔的处理能力越高。4.2.5产品纯度要求的产品纯度越高,吸附剂的有效利用率就越低,吸附塔的处理能力越低。4.3氢气回收率由于PSA装置的氢气损失来源于吸附剂的再生阶段,因而吸附塔的处理能力越高,则再生的周期就可以越长,单位时间内的再生次数就越少,氢气损失就越少,氢回收率就越高。也就是说,在原料气组分和温度一定的情况下应尽量提高吸附压力、降低解吸压力、降低产品纯度,从而提高氢气回收率,提高装置的经济效益。5.工业吸附分离流程的主要工序吸附工序-在常温、高压下吸附杂质,出产品。减压工序-通过一次或多次的均压降压过程,将床层死空间氢气回收。顺放工序-通过顺向减压过程获得冲洗再生气源。逆放工序-逆着吸附方向减压使吸附剂获得部分再生。冲洗工序-用其它塔顺放出的氢气冲洗吸附床,降低杂质分压,使吸附剂完成最终的再生,冲洗时间越长越好。升压工序-通过一次或多次的均压升压和产品气升压过程使吸附塔压力升至吸附压力,为下一次吸附作好准备。