《第5章 抽样与抽样分布.ppt》由会员分享,可在线阅读,更多相关《第5章 抽样与抽样分布.ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 5 章 抽样分布,5.1 几个重要分布 5.2 抽样分布 5.3 抽样分布的性质,5.1 由正态分布导出的几个重要分布,2分布 t 分布 F 分布,2 分布,由阿贝(Abbe) 于1863年首先给出,后来由海尔墨特(Hermert)和卡皮尔逊(KPearson) 分别于1875年和1900年推导出来 设 ,则 令 ,则 Y 服从自由度为1的2分布,即 当总体 ,从中抽取容量为n的样本,则,2分布(2 distribution),分布的变量值始终为正 分布的形状取决于其自由度n的大小,通常为不对称的正偏分布,但随着自由度的增大逐渐趋于对称 期望为:E(2)=n,方差为:D(2)=2n (n为
2、自由度) 可加性:若U和V为两个独立的2分布随机变量,U2(n1),V2(n2),则U+V这一随机变量服从自由度为n1+n2的2分布,2分布(性质和特点),c2分布(图示),t 分布,t 分布,高塞特(W.S.Gosset)于1908年在一篇以“Student”(学生)为笔名的论文中首次提出 t 分布是类似正态分布的一种对称分布,它通常要比正态分布平坦和分散 一个特定的分布依赖于称之为自由度的参数。随着自由度的增大,分布也逐渐趋于正态分布,t 分布图示,抽样分布的概念,样本统计量的概率分布,是一种理论分布 在重复选取容量为n的样本时,由该统计量的所有可能取值形成的相对频数分布 样本统计量是随机
3、变量 样本均值,样本方差,样本比例等 结果来自容量相同的所有可能样本 提供了样本统计量长远而稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据,抽样分布 (sampling distribution),样本均值的抽样分布(例题分析),【例】设一个总体,含有4个元素(个体) ,即总体单位数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总体的均值、方差及分布如下,均值和方差,样本均值的抽样分布 (例题分析), 计算出各样本的均值,如下表。并给出样本均值的抽样分布,样本均值的分布与总体分布的比较 (例题分析), = 2.5 2 =1.25,总体分布,抽样分布的形成过程
4、 (sampling distribution),样本均值的抽样分布,样本均值的数学期望 样本均值的方差 重复抽样 不重复抽样,样本均值的抽样分布(数学期望与方差),样本均值的抽样分布(数学期望与方差),比较及结论:1. 样本均值的均值(数学期望) 等于总体均值 2. 样本均值的方差等于总体方差的1/n,x 的分布趋于正态分布的过程,样本均值的抽样分布与中心极限定理,当总体服从正态分布N(,2)时,来自该总体的所有容量为n的样本的均值x也服从正态分布,x 的数学期望为,方差为2/n。即xN(,2/n),中心极限定理(central limit theorem),从均值为,方差为 2的一个任意总
5、体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为、方差为2/n的正态分布,抽样分布与总体分布的关系,总体分布,正态分布,非正态分布,大样本,小样本,正态分布,正态分布,非正态分布,样本比例的抽样分布,总体(或样本)中具有某种属性的单位与全部单位总数之比 不同性别的人与全部人数之比 合格品(或不合格品) 与全部产品总数之比 总体比例可表示为 样本比例可表示为,比例(proportion),在重复选取容量为n的样本时,由样本比例的所有可能取值形成的相对频数分布 一种理论概率分布 当样本容量很大时,样本比例的抽样分布可用正态分布近似 推断总体比例的理论基础,样本比例的抽样分布,
6、样本比例的数学期望 样本比例的方差 重复抽样 不重复抽样,样本比例的抽样分布(数学期望与方差),样本方差的分布 两个样本方差比的分布,样本方差的分布,样本方差的分布,在重复选取容量为n的样本时,由样本方差的所有可能取值形成的相对频数分布 对于来自正态总体的简单随机样本,则比值 的抽样分布服从自由度为 (n -1) 的2分布,即,中心极限定理,样本均值的抽样分布与中心极限定理,当总体服从正态分布N(,2)时,来自该总体的所有容量为n的样本的均值x也服从正态分布,x 的数学期望为,方差为2/n。即xN(,2/n),中心极限定理(central limit theorem),中心极限定理:设从均值为,方差为 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为、方差为2/n的正态分布,