《第2章线性系统的数学模型PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第2章线性系统的数学模型PPT讲稿.ppt(81页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第2章线性系统的数学模型第1页,共81页,编辑于2022年,星期一1、数学模型:、数学模型:描述系统输入、输出变量以及内部各变量之间关系的数描述系统输入、输出变量以及内部各变量之间关系的数学表达式。学表达式。1)动态模型:)动态模型:描述系统处于暂态过程中各变量之间关系的表描述系统处于暂态过程中各变量之间关系的表达式,它一般是时间函数。达式,它一般是时间函数。如:微分方程,传递函数,差分方程,状态方程等。如:微分方程,传递函数,差分方程,状态方程等。2)静态模型:)静态模型:描述过程处于稳态时各变量之间的关系。一般描述过程处于稳态时各变量之间的关系。一般不是时间函数不是时间函数2、建立动态模型
2、的方法、建立动态模型的方法1)解析法:)解析法:依据系统各变量之间所遵循的定律定理建模。依据系统各变量之间所遵循的定律定理建模。2)实验法:)实验法:用实验数据提供的信息,采用辨识方法建模。用实验数据提供的信息,采用辨识方法建模。3、建立动态模型的意义:、建立动态模型的意义:找出系统输入输出变量之间的相互关系,以便找出系统输入输出变量之间的相互关系,以便分析设计系统,使系统控制效果最优。分析设计系统,使系统控制效果最优。第2页,共81页,编辑于2022年,星期一2.1.1 2.1.1 列写系统微分方程的步骤列写系统微分方程的步骤 1 1、分析系统工作原理,将系统划分为若干环节,确定系统、分析系
3、统工作原理,将系统划分为若干环节,确定系统 和环节和环节的输入、输出变量,每个环节可考虑列写一个方程;的输入、输出变量,每个环节可考虑列写一个方程;2 2、根据各变量所遵循的基本定律得出的基本规律,列写各环节的原始方程式,、根据各变量所遵循的基本定律得出的基本规律,列写各环节的原始方程式,并考虑适当简化和线性化;并考虑适当简化和线性化;3 3、将各环节方程式联立,消去中间变量,最后得出只含输入、输出变量、将各环节方程式联立,消去中间变量,最后得出只含输入、输出变量及其导数的微分方程;及其导数的微分方程;4 4、将输出变量及各阶导数放在等号左边,将输入变量及各阶导数放在等号右、将输出变量及各阶导
4、数放在等号左边,将输入变量及各阶导数放在等号右边,并按降幂排列,最后将系统归化为具有一定物理意义的形式,成为标准化边,并按降幂排列,最后将系统归化为具有一定物理意义的形式,成为标准化微分方程。微分方程。2.1 线性系统的时域数学模型-微分方程微分方程第3页,共81页,编辑于2022年,星期一2.1.2 2.1.2 举例举例例例2-1:设有由电感:设有由电感L、电容、电容C和电阻和电阻R组成的电路,如组成的电路,如图所示。试求出以输出电压图所示。试求出以输出电压U2为输出变量和以输入电压为输出变量和以输入电压U1为输入变量的微分方程。为输入变量的微分方程。第4页,共81页,编辑于2022年,星期
5、一(1 1)确定电路的输入量和输出量)确定电路的输入量和输出量解解:U1 1为输入量,为输入量,U2 2为输出量为输出量(2 2)依据电路所遵循的电学基本定律列写微分方程)依据电路所遵循的电学基本定律列写微分方程(3 3)消去中间变量,得到)消去中间变量,得到U2与与U1的关系方程的关系方程对(2)式求导得 代入(3)式并整理得 第5页,共81页,编辑于2022年,星期一例例2-2:如图所示为一弹簧阻尼系统。图中质量为:如图所示为一弹簧阻尼系统。图中质量为m的物体受到外力的物体受到外力作用产生位移作用产生位移Y,求该系统的微分方程。,求该系统的微分方程。解:解:(1 1)确定输入量和输出量)确
6、定输入量和输出量输入量:外力输入量:外力F F(t)t)输出量输出量:位移位移y(t)y(t)(3 3)消去中间变量,得到)消去中间变量,得到输入与输出的关系方程输入与输出的关系方程(2 2)列写原始微分方程)列写原始微分方程其中其中阻尼器的粘性摩擦力阻尼器的粘性摩擦力弹簧的弹力弹簧的弹力(1 1)将以上各式代入(1)式得 第6页,共81页,编辑于2022年,星期一(4 4)整理且标准化)整理且标准化 令 -时间常数;-阻尼比;-放大系数。得第7页,共81页,编辑于2022年,星期一例例2-3 2-3 设有带直流电动机系统,如图所示。试列写系统设有带直流电动机系统,如图所示。试列写系统微分方程
7、。微分方程。解:解:(1)确定输入输出量)确定输入输出量输输入量入量u ua a,设设输出量输出量n n,设,设 (2)列微分方程)列微分方程等效电路如图所示等效电路如图所示 电枢回路的微分方程:电枢回路的微分方程:-电势常数电势常数电动机机械微分方程电动机机械微分方程(2-2)(2-1)第8页,共81页,编辑于2022年,星期一若考虑电动机负载力矩和粘性摩擦力力矩时:若考虑电动机负载力矩和粘性摩擦力力矩时:其中其中,通常忽略不计。,通常忽略不计。电动机电磁转距与电枢电流成正比电动机电磁转距与电枢电流成正比(3)消去中间变量)消去中间变量将(将(2-3)带入()带入(2-4)得)得(2-3)(
8、2-5)(2-6)则当电机空载时有则当电机空载时有(2-4)第9页,共81页,编辑于2022年,星期一将(将(2-5),(2-6)带入()带入(2-1)得)得(2-7)令:令:-电动电动机机电磁电磁时间时间常数常数 -电动机机电时间常数电动机机电时间常数得得(2-8)若以若以为输入,电动机转角为输入,电动机转角为输出为输出将(将(2-9)()(2-10)()(2-11)带入()带入(2-8)得)得(2-9)(2-10)(2-11)(2-12)第10页,共81页,编辑于2022年,星期一例例2-4下图所示为闭环调速控制系统,编写控制系统下图所示为闭环调速控制系统,编写控制系统微分方程。微分方程。
9、第11页,共81页,编辑于2022年,星期一(2)编写各环节的微分方程编写各环节的微分方程解解:(1)确定系统输入输出量确定系统输入输出量输入量为给定电压输入量为给定电压r(t)=Ug,输出量为电动机转速输出量为电动机转速c(t)=n.1)比例放大环节)比例放大环节假定假定,有,有2)可控硅整流功率放大环节)可控硅整流功率放大环节Ud=KsUk;Ks-电压放大系数电压放大系数(2-15)(2-16)第12页,共81页,编辑于2022年,星期一3)直流电动机)直流电动机其中其中R电动机电枢回路总电阻电动机电枢回路总电阻4)反馈环节)反馈环节比例系数比例系数(3)消去中间变量消去中间变量(2-17
10、)将式(将式(2-15)()(2-16)代入()代入(2-17)经整理得:)经整理得:=(2-18)第13页,共81页,编辑于2022年,星期一令KsK1=Kg正向通道放大系数,KsfKsK1/Ce=Kk开环放大系数得闭环系统的微分方程式:第14页,共81页,编辑于2022年,星期一设质量弹簧摩擦系统如图所示,图中设质量弹簧摩擦系统如图所示,图中为粘性摩擦系数,为粘性摩擦系数,为弹簧系数,系统的输入量为力为弹簧系数,系统的输入量为力,输出量为质量的位移,输出量为质量的位移,试列出系统的输入输出微分方程。试列出系统的输入输出微分方程。练习练习【解解】显然,系统的摩擦力为弹簧力为根据牛顿第二运动定
11、律移项整理,得微分方程为第15页,共81页,编辑于2022年,星期一2.2 线性系统的复域数学模型-传递函数传递函数微分方程式描述线性系统运动的数学模型的基本形式。通过求解微分方程,可以得到系统在给定输入信号作用下的输出响应。用微分方程式表示系统的数学模型有如下问题:1、当微分方程的阶数较高时,求解困难,且计算量较大。2、对于控制系统的分析,不仅要了解它在给定信号作用下的输出响应,更要重视系统的结构、参数与其性能间的关系,微分方程无法实现此问题。控制工程中,一般不需要精确地求出系统微分方程的解,作出它的输出响应,而是用简单的方法了解系统是否稳定及其在动态过程中的主要特征,能判别某些参数的改变或
12、校正装置的加入对系统的影响。以传递函数为工具的根轨迹法和频率响应法能实现上述的要求。第16页,共81页,编辑于2022年,星期一2.2.1 2.2.1 传递函数的定义传递函数的定义传递函数传递函数:初始条件为零时,线性定常系统或元件初始条件为零时,线性定常系统或元件输出信号的拉氏变换与输入信号的拉氏变换的比,输出信号的拉氏变换与输入信号的拉氏变换的比,称为该系统或元件的传递函数。称为该系统或元件的传递函数。线性定常系统微分方程的一般表达式为系统输出量,为系统输入量。在初始情况为零时,两端取拉氏变换:第17页,共81页,编辑于2022年,星期一系统的传递函数为 或写为 传递函数与输入、输出之间的
13、关系,可用图表示。第18页,共81页,编辑于2022年,星期一传递函数的两种表达形式:传递函数的两种表达形式:=1)2)=第19页,共81页,编辑于2022年,星期一2.2.2 2.2.2 传递函数的性质传递函数的性质1.传递函数只能够适用于线性定常系统;传递函数只能够适用于线性定常系统;2.传递函数是表征线性定常系统或元件自身的固有特性,它与其传递函数是表征线性定常系统或元件自身的固有特性,它与其输入信号的形式无关输入信号的形式无关,但和输入信号的作用位置及输出信号,但和输入信号的作用位置及输出信号的取出位置有关;的取出位置有关;3.线性定常系统或元件的微分方程与传递函数一一对应,它们是线性
14、定常系统或元件的微分方程与传递函数一一对应,它们是在不同域对同一系统或元件的描述;在不同域对同一系统或元件的描述;4.传递函数只反应系统在零初始状态下的动态特性;传递函数只反应系统在零初始状态下的动态特性;5.传递函数是复变量传递函数是复变量s s的有理分式,且分子、分母多项式的各项系数的有理分式,且分子、分母多项式的各项系数均为实数,分母多项式的次数均为实数,分母多项式的次数N N大于等于分子多项式的次数大于等于分子多项式的次数M M,即,即 ;6.6.两个系统的传递函数结构参数一样,但若输入、输出的物理量不同,则两个系统的传递函数结构参数一样,但若输入、输出的物理量不同,则代表的物理意义不
15、同;代表的物理意义不同;7.7.对于多输入、多输出系统,不能用一个传递函数去描述,而是要用传对于多输入、多输出系统,不能用一个传递函数去描述,而是要用传递函数矩阵去表征系统的输入与输出之间的关系。递函数矩阵去表征系统的输入与输出之间的关系。第20页,共81页,编辑于2022年,星期一例:传递函数求法例:传递函数求法输入量输入量x(t)=ux(t)=u,输出量,输出量y(t)=iy(t)=i。列回路电压方程:列回路电压方程:即即 x(s)=Ry(s)+Lsy(s)x(s)=Ry(s)+Lsy(s)经整理得:经整理得:=其中其中 T Tl l=,电路的时间常数。电路的时间常数。两边取拉氏变换得:两
16、边取拉氏变换得:u u(s)=R(s)=Ri i(s)+Ls(s)+Lsi i(s)(s)第21页,共81页,编辑于2022年,星期一2.2.3典型环节的传递函数及暂态特性典型环节的传递函数及暂态特性1.比例环节(无惯性环节)比例环节(无惯性环节)2)传递函数)传递函数3)输入输出变化曲线输入输出变化曲线4)结构图)结构图1)数学表达式)数学表达式K环节放大系数环节放大系数第22页,共81页,编辑于2022年,星期一2惯性环节惯性环节2)传递函数)传递函数特点:只含一个储能元件特点:只含一个储能元件)数学表达式)数学表达式3)单位阶跃响应单位阶跃响应4)结构图结构图第23页,共81页,编辑于2
17、022年,星期一3、积分环节、积分环节1)数学表达式数学表达式2)传递函数)传递函数3)单位阶跃响应曲线单位阶跃响应曲线4)结构图)结构图 响响应应曲曲线线随随时时间间直直线线增增长长。输输入入突突然然消消失失,积积分分停停止止,输输出出维维持持不不变变,故故积积分分环环节节具具有有记记忆忆功功能能,如如图图所所示。示。第24页,共81页,编辑于2022年,星期一4、微分环节、微分环节1)数学表达式)数学表达式2)传递函数)传递函数3)变化曲线)变化曲线4)结构图)结构图第25页,共81页,编辑于2022年,星期一5、振荡环节、振荡环节1)数学表达式)数学表达式2)传递函数)传递函数其中其中时
18、间常数时间常数衰减系数(阻尼系数、阻尼比)衰减系数(阻尼系数、阻尼比)对上式变形可写成:对上式变形可写成:自然振荡角频率自然振荡角频率其中其中第26页,共81页,编辑于2022年,星期一3)阶跃响应曲线阶跃响应曲线输入量单位阶跃信号时,则输入量单位阶跃信号时,则对上式拉氏反变换,求输出响应得对上式拉氏反变换,求输出响应得4)结构图)结构图第27页,共81页,编辑于2022年,星期一6、时滞环节、时滞环节1)数学表达式)数学表达式当当时,时,当当时,时,2)传递函数)传递函数3)输入输出变化曲线)输入输出变化曲线4)结构图)结构图第28页,共81页,编辑于2022年,星期一2.3.1结构图的基本
19、概念结构图的基本概念1.1.定义定义:是描述系统各组成元件之间信号传递关系的数学是描述系统各组成元件之间信号传递关系的数学图形,它表示了系统的输入与输出之间的关系。图形,它表示了系统的输入与输出之间的关系。2.3 控制系统结构图及其等效变换控制系统结构图及其等效变换2.结构图的绘制结构图的绘制1)写出组成系统的各环节的微分方程)写出组成系统的各环节的微分方程(传递函数传递函数);2)根据传递函数画出相应的函数方框;)根据传递函数画出相应的函数方框;3)按信号流向将函数方框一一连接起来。)按信号流向将函数方框一一连接起来。第29页,共81页,编辑于2022年,星期一常用符号及术语2)比较点(相加
20、点):对两个以上的信号进行加减运算;1)信号线:带箭头的直线,箭头表示信号方向;2.3.2 2.3.2 结构图的组成结构图的组成 3)引出点(分支点):信号引出的一点,称为引出点。通过引出点的信号都是相同的;4)方框:对信号进行的数学变换;第30页,共81页,编辑于2022年,星期一5)结构图的串联、并联、反馈连接。第31页,共81页,编辑于2022年,星期一式有式有由由(1)I2(s)I1(s)I(s)+例:试绘制如图所示无源网络的结构图。第32页,共81页,编辑于2022年,星期一第33页,共81页,编辑于2022年,星期一例例2-6 2-6 图图中中为为一一无无源源RCRC网网络络。选选
21、取取变变量量如如图图所所示示,根根据电路定律,写出其微分方程组为据电路定律,写出其微分方程组为 第34页,共81页,编辑于2022年,星期一第35页,共81页,编辑于2022年,星期一零初始条件下,对等式两边取拉氏变换,得第36页,共81页,编辑于2022年,星期一RC网络方框图各环节方框图第37页,共81页,编辑于2022年,星期一2.3.3结构图的运算1、串联连接的传递函数结论:二环节串联传递函数等于二传函之积。推广:N环节串联,传递函数等于N个环节传函之积。第38页,共81页,编辑于2022年,星期一2、并联连接的传递函数结论:二环节并联,其等效传函等于二环节传 函之和。推广:N环节并联
22、,其等效传函等于各环节传 函之和。第39页,共81页,编辑于2022年,星期一3、反馈回路传递函数的求取前向通道:由偏差信号至输出信号的通道;反馈通道:由输出信号至反馈信号的通道。第40页,共81页,编辑于2022年,星期一当为正反馈时*结论:第41页,共81页,编辑于2022年,星期一第42页,共81页,编辑于2022年,星期一(1)相加点前移1相加点等效移动规则相加点前移,在移动支路中串入所越过的传递函数的倒数方框(2)相加点后移相加点后移,在移动支路中串入所越过的传递函数方框。2.3.4结构图的简化第43页,共81页,编辑于2022年,星期一(1)分支点前移2、分支点等效移动规则分支点前
23、移,在移动支路中串入所越过的传递函数方框。(2)分支点后移分支点后移,在移动支路中串入所越过传递函数的倒数的方框。第44页,共81页,编辑于2022年,星期一(1)前向通道中各串联函数方框的传函乘积保持不变;(2)各反馈回路所含函数方框的传函之积保持不变。3.结构图的简化原则在结构图的简化过程中,相加点和分支点之间,在结构图的简化过程中,相加点和分支点之间,一般不宜交换其位置,相加号一般不宜交换其位置,相加号“+”也不能越过比较点也不能越过比较点或引出点。或引出点。此外,此外,“-”号可以在信号线上越过方框移动,但不能号可以在信号线上越过方框移动,但不能越过引出点。越过引出点。第45页,共81
24、页,编辑于2022年,星期一例例 2-82-8化 简 图(a)所示系统方框图,并求系统传递函数 第46页,共81页,编辑于2022年,星期一第47页,共81页,编辑于2022年,星期一例例2-9 2-9 试化简如图(a)所示系统的方框图,并求闭环传递函数。第48页,共81页,编辑于2022年,星期一第49页,共81页,编辑于2022年,星期一第50页,共81页,编辑于2022年,星期一得系统的闭环传递函数为第51页,共81页,编辑于2022年,星期一2.4 4 扰动输入下系统的闭环传递函数扰动输入下系统的闭环传递函数第52页,共81页,编辑于2022年,星期一令 则定义:C(s)/R(s)为被
25、控信号对于控制信号的闭环传函,记为 ,即开环传函:前向通道与反馈通道传递函数之积称为 开环传函,记为G(s)。单位反馈:若H(s)=1,则系统称为单位反馈系统。2.4.1给定输入作用下的闭环传递函数第53页,共81页,编辑于2022年,星期一定义:C(s)/N(s)为被控信号对于扰动信号的闭环传函,记为。令称为误差传函2.4.2扰动作用下的闭环系统的传递函数第54页,共81页,编辑于2022年,星期一2.5 信号流图和梅逊增益公式的应用信号流图和梅逊增益公式的应用节点:用以表示变量或信号的点称为节点,用“o”表示。传输:两节点间的增益或传递函数称为传输。支路:连接两节点并标有信号流向的定向线段
26、支路。源点:只有输出支路而无输入支路的节点(与系统的输入信号相对应)。2.5.1信号流图的常用术语阱点(汇点):只有输入支路而无输出支路的节点称为阱点(汇点)或输出节点,与输出信号相对应。第55页,共81页,编辑于2022年,星期一混合节点:既有输入支路又有输出支路的节点。通路:沿支路箭头所指方向穿过各相连支路的通径。开通路:如通路与任意节点相交不多于一次,称为开通路。闭通路:如果通路的终点就是通路的起点,而与任何其它节点相交次数不多于一次,则称为闭通路或回路。回路增益:回路中各支路传输的乘积。不接触回路:回路间没有任何共有节点,则称其为不接触回路。前向通路:从源点到阱点的通路上,通过任何节点
27、不多于一次,称为前向通路,前向通路中各支路传输的乘积,称为前向通路增益。第56页,共81页,编辑于2022年,星期一2.5.2信号流图的基本性质1以节点代表变量,源点代表输入量,阱点代表输出量,用混合节点代表变量或信号的汇合。在混合节点处,出支路的信号等于各支路信号的叠加。2以支路表示变量或信号的传输和变换过程,信号只能沿着支路的箭头方向传输。在信号流图中每经过一条支路,相当于在结构图中经过一个用方框表示的环节。3增加一个具有单位传输的支路,可以把混合节点化为阱点。4对于同一系统,信号流图的形式不是唯一的。信号流图和结构图是一一对应的,且可以互相转化。第57页,共81页,编辑于2022年,星期
28、一2.5.3信号流图的绘制 首先对每一个变量指定一个节点,并按照系统中变量的因果关系,从左向右顺序排列;然后,用标明增益的支路,根据数学方程式将各节点变量正确连接,便得到系统的信号流图。1 1、根据微分方程绘制信号流图、根据微分方程绘制信号流图 对于含有微分或积分的线性方程,一般应通过拉氏变换,将微分对于含有微分或积分的线性方程,一般应通过拉氏变换,将微分方程变换为方程变换为s s的代数方程后再画出信号流图。的代数方程后再画出信号流图。基本方法:第58页,共81页,编辑于2022年,星期一例2-11已知描述线性系统的方程为解解:(1):(1)画出节点画出节点 (2)(2)分别绘制出各方程的信号
29、流图。如图分别绘制出各方程的信号流图。如图(a)(a)、(b)(b)、(c)(c)、(d)(d)、(e)(e)所示。所示。(3)(3)将五个信号流图叠加在一起,得到整个系统的信号流图,将五个信号流图叠加在一起,得到整个系统的信号流图,如下图如下图(f)(f)所示。所示。第59页,共81页,编辑于2022年,星期一(b)(a)(c)(d)(e)(f)第60页,共81页,编辑于2022年,星期一 在结构图的信号线上用小圆圈标志出传递的信号,便得到节点;用标有传递函数和信号传输方向的线段代替结构图中的方框,便得到支路。在两者的转换过程中,信号流图不像结构图那样可以区分比较点和分支点,还可区分相加和相
30、减的运算,信号流图中信号相加或相减是在支路增益上表示出来的,即相加点的负号要加在相应的支路增益上。注意:基本方法:2 2、根据系统结构图绘制信号流图、根据系统结构图绘制信号流图第61页,共81页,编辑于2022年,星期一(1)在信号流图上表示变量的相减,在相应支路上要用负的支路增益表示。结构图中比较点的处理:(2)结构图中进入相加点的所有信号与从相加点出来的信号是各不相同的。因此,在信号流图上表示这些信号时,要使用与这些信号相对应的节点分别表示。第62页,共81页,编辑于2022年,星期一(3)当引出点在相加点之后,则可以把引出点和相加点合并成一个节点。当引出点在相加点之前,就不能把两者合并成
31、一个节点,而要用两个不同的节点表示 。第63页,共81页,编辑于2022年,星期一2.5.4信号流图的简化(1)串联支路的总传输等于各支路传输之积;(2)并联支路的总传输等于各支路传输之和;(3)混合节点可以通过移动支路的方法消去;(4)回路可以根据反馈连接的规则化为等效支路。X2第64页,共81页,编辑于2022年,星期一例例2-12 2-12 将下图所示系统方框图化为信号流图并化简求出系统的闭环传递函数)()()(sRsCs=F第65页,共81页,编辑于2022年,星期一解解:信号流图如图(a)所示。化G1与G2串联等效为G1G2支路,G3与G4并联等效为G3+G4支路,第66页,共81页
32、,编辑于2022年,星期一如图(b),G1G2与-H1反馈简化为 支路,又与G3+G4串联,等效为 如图(c)第67页,共81页,编辑于2022年,星期一进而求得闭环传递函数为第68页,共81页,编辑于2022年,星期一2.5.5梅逊增益公式第69页,共81页,编辑于2022年,星期一例例2-14求图示信号流图的闭环传递函数求图示信号流图的闭环传递函数解解:系统单回环有:L1=G1,L2=G2,L3=G1G2,L4=G1G2,L5=G1G2系统的特征式为:第70页,共81页,编辑于2022年,星期一前向通道有四条:P1=-G11=1 P2=G22=1 P3=G1G23=1 P4=G1G24=1
33、系统的传递函数为第71页,共81页,编辑于2022年,星期一例例2-152-15:试用梅逊增益公式求下面系统信号流图的闭环传递函数C(s)/R(s)。第72页,共81页,编辑于2022年,星期一解:解:该信号流图有三条前向通道,增益分别为:该信号流图有三条前向通道,增益分别为:P1=G1G2G3G4G5,P2=G1G4G5G6,P3=G1G2G7。有有4个独立回路分别为:个独立回路分别为:L1=-G4H1,L2=-G2G7H2,L3=-G4G5G6H2,L4=-G2G3G4G5H2.两个互不接触回路有两个互不接触回路有1组,为:组,为:L1L2=G2G4G7H1H2所以所以第73页,共81页,
34、编辑于2022年,星期一例2-16使用梅逊增益公式求下图所示系统的传递函数.第74页,共81页,编辑于2022年,星期一例2-17设某系统的结构图如图所示,试求其传递函数.R(s)11G1G3G2)G4-1-H1-H2R(s)11G1G3G2C(sG4-1第75页,共81页,编辑于2022年,星期一第76页,共81页,编辑于2022年,星期一1、控制系统结构图如下图所示,试分别使用结构图简化和信号流图的方法求 。练习题第77页,共81页,编辑于2022年,星期一解1:利用方框图化简方法求解 第78页,共81页,编辑于2022年,星期一解解2:用信号流图法求解用信号流图法求解1、在结构图上画出相关节点、在结构图上画出相关节点第79页,共81页,编辑于2022年,星期一2、画出相应的信号流图、画出相应的信号流图该信号流图有两条前向通道,三个独立回路,前向通道增该信号流图有两条前向通道,三个独立回路,前向通道增益分别为:益分别为:P1=G1G2G3,P2=G4三个独立回路分别为:三个独立回路分别为:-G2G3H2,-G2H1,+G1G2H1所以所以第80页,共81页,编辑于2022年,星期一2、化简下面方块图,并求取传递函数 第81页,共81页,编辑于2022年,星期一