第3章场效应管PPT讲稿.ppt

上传人:石*** 文档编号:43541492 上传时间:2022-09-17 格式:PPT 页数:50 大小:5.11MB
返回 下载 相关 举报
第3章场效应管PPT讲稿.ppt_第1页
第1页 / 共50页
第3章场效应管PPT讲稿.ppt_第2页
第2页 / 共50页
点击查看更多>>
资源描述

《第3章场效应管PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第3章场效应管PPT讲稿.ppt(50页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第3章场效应管1第1页,共50页,编辑于2022年,星期一概概 述述场场效效应应管管是是另另一一种种具具有有正正向向受受控控作作用用的的半半导导体体器器件件。它它体体积积小小、工工艺艺简简单单,器器件件特特性性便便于于控控制制,是是目目前前制制造造大大规规模模集成电路的主要有源器件。集成电路的主要有源器件。场效应管与三极管主要区别:场效应管与三极管主要区别:场效应管输入电阻远大于三极管输入电阻。场效应管输入电阻远大于三极管输入电阻。场效应管是单极型器件场效应管是单极型器件(三极管是双极型器件三极管是双极型器件)。场效应管分类:场效应管分类:MOS场效应场效应管管结型场效应管结型场效应管2第2页

2、,共50页,编辑于2022年,星期一3.1MOS场效应管场效应管P沟道沟道(PMOS)N沟道沟道(NMOS)P沟道沟道(PMOS)N沟道沟道(NMOS)MOSFET增强型增强型(EMOS)耗尽型耗尽型(DMOS)N沟沟道道MOS管管与与P沟沟道道MOS管管工工作作原原理理相相似似,不不同同之之处处仅仅在在于于它它们们形形成成电电流流的的载载流流子子性性质质不不同同,因因此此导导致致加加在在各各极极上上的电压极性相反。的电压极性相反。3第3页,共50页,编辑于2022年,星期一N+N+P+P+PUSGD3.1.1增强型增强型MOS场效应管场效应管qN沟道沟道EMOSFET结构示意图结构示意图源极

3、源极漏极漏极衬底极衬底极SiO2绝缘层绝缘层金属栅极金属栅极P型硅型硅衬底衬底SGUD电路符号电路符号l沟道长度沟道长度W沟道沟道宽度宽度4第4页,共50页,编辑于2022年,星期一 N沟道沟道EMOS管管外部工作条件外部工作条件 VDS0(保证漏衬保证漏衬PN结反偏结反偏)。U接电路最低电位或与接电路最低电位或与S极相连极相连(保证源衬保证源衬PN结反偏结反偏)。VGS0(形成导电沟道形成导电沟道)PP+N+N+SGDUVDS-+-+-+-+VGSq N沟道沟道EMOS管管工作原理工作原理栅栅 衬衬之之间间相相当当于于以以SiO2为为介介质质的平板电容器。的平板电容器。5第5页,共50页,编

4、辑于2022年,星期一N沟道沟道EMOSFET沟道形成原理沟道形成原理假设假设VDS=0,讨论,讨论VGS作用作用PP+N+N+SGDUVDS=0-+-+VGS形成空间电荷区形成空间电荷区并与并与PN结相通结相通VGS 衬底表面层中衬底表面层中负离子负离子、电子、电子 VGS 开启电压开启电压VGS(th)形成形成N型导电沟道型导电沟道表面层表面层npVGS越大,反型层中越大,反型层中n越多,导电能力越强。越多,导电能力越强。反型层反型层6第6页,共50页,编辑于2022年,星期一 VDS对沟道的控制对沟道的控制(假设假设VGSVGS(th)且保持不变且保持不变)VDS很小时很小时VGD VG

5、S。此时。此时W近似不变,即近似不变,即Ron不变。不变。由图由图VGD=VGS-VDS因此因此VDS ID线性线性。若若VDS 则则VGD 近漏端沟道近漏端沟道 Ron增大。增大。此时此时 Ron ID 变慢。变慢。PP+N+N+SGDUVDS-+-+VGS-+-+PP+N+N+SGDUVDS-+-+VGS-+-+7第7页,共50页,编辑于2022年,星期一当当VDS增加到增加到使使VGD=VGS(th)时时 A点出现预夹断点出现预夹断若若VDS继续继续 A点左移点左移 出现夹断区出现夹断区此时此时VAS=VAG+VGS=-VGS(th)+VGS(恒定恒定)若忽略沟道长度调制效应,则近似认为

6、若忽略沟道长度调制效应,则近似认为 l 不变不变(即即Ron不变不变)。因此预夹断后:因此预夹断后:PP+N+N+SGDUVDS-+-+VGS-+-+APP+N+N+SGDUVDS-+-+VGS-+-+AVDS ID基本维持不变。基本维持不变。8第8页,共50页,编辑于2022年,星期一若考虑沟道长度调制效应若考虑沟道长度调制效应则则VDS 沟道长度沟道长度l 沟道电阻沟道电阻Ron略略。因此因此VDS ID略略。由上述分析可描绘出由上述分析可描绘出ID随随VDS变化的关系曲线:变化的关系曲线:IDVDSOVGSVGS(th)VGS一定一定曲线形状类似三极管输出特性。曲线形状类似三极管输出特性

7、。9第9页,共50页,编辑于2022年,星期一MOS管仅依靠一种载流子管仅依靠一种载流子(多子多子)导电导电,故称,故称单极型器件。单极型器件。三极管中多子、少子同时参与导电,故称三极管中多子、少子同时参与导电,故称双极型器件。双极型器件。利利用用半半导导体体表表面面的的电电场场效效应应,通通过过栅栅源源电电压压VGS的的变变化化,改改变变感感生生电电荷荷的的多多少少,从从而而改改变变感感生生沟沟道道的的宽宽窄窄,控控制制漏漏极极电电流流ID。MOSFET工作原理:工作原理:10第10页,共50页,编辑于2022年,星期一由由于于MOS管管栅栅极极电电流流为为零零,故故不不讨讨论论输输入入特特

8、性性曲曲线。线。共源组态特性曲线:共源组态特性曲线:ID=f(VGS)VDS=常数常数转移特性:转移特性:ID=f(VDS)VGS=常数常数输出特性:输出特性:q 伏安特性伏安特性+TVDSIG 0VGSID+-转转移移特特性性与与输输出出特特性性反反映映场场效效应应管管同同一一物物理理过过程程,它它们们之间可以相互转换。之间可以相互转换。11第11页,共50页,编辑于2022年,星期一 NEMOS管输出特性曲线管输出特性曲线q 非饱和区非饱和区特点:特点:ID同时受同时受VGS与与VDS的控制。的控制。当当VGS为常数时,为常数时,VDSID近似线性近似线性,表现为一种电阻特性;,表现为一种

9、电阻特性;ID/mAVDS/VOVDS=VGS VGS(th)VGS=5V3.5V4V4.5V当当VDS为常数时,为常数时,VGSID,表现出一种压控电阻的特性。,表现出一种压控电阻的特性。沟道预夹断前对应的工作区。沟道预夹断前对应的工作区。条件:条件:VGSVGS(th)VDSVGS(th)VDSVGSVGS(th)考考虑虑到到沟沟道道长长度度调调制制效效应应,输输出出特特性性曲曲线线随随VDS的的增增加加略有上翘。略有上翘。注意:饱和区注意:饱和区(又称有源区又称有源区)对应对应三极管的放大区。三极管的放大区。14第14页,共50页,编辑于2022年,星期一数学模型:数学模型:若考虑沟道长

10、度调制效应,则若考虑沟道长度调制效应,则ID的修正方程:的修正方程:工工作作在在饱饱和和区区时时,MOS管管的的正正向向受受控控作作用用,服服从从平平方方律关系式:律关系式:其中,其中,称称沟道长度调制系数,其值与沟道长度调制系数,其值与l 有关。有关。通常通常=(0.0050.03)V-115第15页,共50页,编辑于2022年,星期一q 截止区截止区特点:特点:相当于相当于MOS管三个电极断开。管三个电极断开。ID/mAVDS/VOVDS=VGS VGS(th)VGS=5V3.5V4V4.5V沟道未形成时的工作区沟道未形成时的工作区条件:条件:VGSVGS(th)ID=0以下的工作区域。以

11、下的工作区域。IG 0,ID 0q 击穿区击穿区 VDS增大增大到一定值时到一定值时漏衬漏衬PN结雪崩击穿结雪崩击穿ID剧增。剧增。VDS沟道沟道l 对于对于l 较小的较小的MOS管管穿通击穿。穿通击穿。16第16页,共50页,编辑于2022年,星期一由由于于MOS管管COX很很小小,因因此此当当带带电电物物体体(或或人人)靠靠近近金金属属栅栅极极时时,感感生生电电荷荷在在SiO2绝绝缘缘层层中中将将产产生生很很大大的的电电压压VGS(=Q/COX),使,使绝缘层绝缘层击穿,造成击穿,造成MOS管永久性损坏管永久性损坏。MOS管保护措施:管保护措施:分立的分立的MOS管:管:各极引线短接、烙铁

12、外壳接地。各极引线短接、烙铁外壳接地。MOS集成电路:集成电路:TD2D1D1D2一一方方面面限限制制VGS间间最最大大电电压压,同同时时对对感感生生电电荷荷起起旁旁路路作用。作用。17第17页,共50页,编辑于2022年,星期一 NEMOS管转移特性曲线管转移特性曲线VGS(th)=3VVDS=5V转移特性曲线反映转移特性曲线反映VDS为常数时,为常数时,VGS对对ID的控制作用,的控制作用,可由输出特性转换得到。可由输出特性转换得到。ID/mAVDS/VOVDS=VGS VGS(th)VGS=5V3.5V4V4.5VVDS=5VID/mAVGS/VO12345转转移移特特性性曲曲线线中中,

13、ID=0时时对对应应的的VGS值值,即即开开启启电电压压VGS(th)。18第18页,共50页,编辑于2022年,星期一q 衬底效应衬底效应集集成成电电路路中中,许许多多MOS管管做做在在同同一一衬衬底底上上,为为保保证证U与与S、D之之间间PN结反偏,衬底应接电路最低电位结反偏,衬底应接电路最低电位(N沟道沟道)或最高电位或最高电位(P沟道沟道)。若若|VUS|-+VUS耗尽层中负离子数耗尽层中负离子数 因因VGS不变不变(G极正电荷量不变极正电荷量不变)ID VUS=0ID/mAVGS/VO-2V-4V根据衬底电压对根据衬底电压对ID的控制作用,又称的控制作用,又称U极为极为背栅极。背栅极

14、。PP+N+N+SGDUVDSVGS-+-+阻挡层宽度阻挡层宽度 表面层中表面层中电子电子数数 19第19页,共50页,编辑于2022年,星期一q P沟道沟道EMOS管管+-+-VGSVDS+-+-SGUDNN+P+SGDUP+N沟道沟道EMOS管与管与P沟道沟道EMOS管工作原理相似。管工作原理相似。即即VDS0、VGS0,VGS正、负、零均可。正、负、零均可。外部工作条件:外部工作条件:DMOS管在饱和区与非饱和区的管在饱和区与非饱和区的ID表达式表达式与与EMOS管管相同相同。PDMOS与与NDMOS的差别仅在于电压极性与电流方向相反。的差别仅在于电压极性与电流方向相反。22第22页,共

15、50页,编辑于2022年,星期一3.1.3四种四种MOS场效应管比较场效应管比较q 电路符号及电流流向电路符号及电流流向SGUDIDSGUDIDUSGDIDSGUDIDNEMOSNDMOSPDMOSPEMOSq 转移特性转移特性IDVGSOVGS(th)IDVGSOVGS(th)IDVGSOVGS(th)IDVGSOVGS(th)23第23页,共50页,编辑于2022年,星期一q 饱和区饱和区(放大区放大区)外加电压极性及数学模型外加电压极性及数学模型 VDS极性取决于沟道类型极性取决于沟道类型N沟道:沟道:VDS0,P沟道:沟道:VDS|VGS(th)|,|VDS|VGSVGS(th)|VG

16、S|VGS(th)|,q 饱和区饱和区(放大区放大区)工作条件工作条件|VDS|VGS(th)|,q 非饱和区非饱和区(可变电阻区可变电阻区)数学模型数学模型25第25页,共50页,编辑于2022年,星期一qFET直流简化电路模型直流简化电路模型(与三极管相对照与三极管相对照)场效应管场效应管G、S之间开路之间开路,IG 0。三极管发射结由于正偏而导通,等效为三极管发射结由于正偏而导通,等效为VBE(on)。FET输出端等效为输出端等效为压控压控电流源,满足平方律方程:电流源,满足平方律方程:三极管输出端等效为三极管输出端等效为流控流控电流源,满足电流源,满足IC=IB。SGDIDVGSSDG

17、IDIG 0ID(VGS)+-VBE(on)ECBICIBIB+-26第26页,共50页,编辑于2022年,星期一3.1.4小信号电路模型小信号电路模型qMOS管简化小信号电路模型管简化小信号电路模型(与三极管对照与三极管对照)gmvgsrdsgdsicvgs-vds+-rds为为场效应管场效应管输出电阻:输出电阻:由于场效应管由于场效应管IG 0,所以输入电阻,所以输入电阻rgs。而三极管发射结正偏,而三极管发射结正偏,故输入电阻故输入电阻rb e较小。较小。与三极管与三极管输出电阻表达式输出电阻表达式rce 1/(ICQ)相似。相似。rb ercebceibic+-+vbevcegmvb

18、e27第27页,共50页,编辑于2022年,星期一MOS管跨导管跨导通常通常MOS管的跨导比三极管的跨导要小一个数量级管的跨导比三极管的跨导要小一个数量级以上,即以上,即MOS管放大能力比三极管弱。管放大能力比三极管弱。28第28页,共50页,编辑于2022年,星期一q计及衬底效应的计及衬底效应的MOS管简化电路模型管简化电路模型考虑到衬底电压考虑到衬底电压vus对漏极电流对漏极电流id的控制作用,小信号等的控制作用,小信号等效电路中需增加一个压控电流源效电路中需增加一个压控电流源gmuvus。gmvgsrdsgdsidvgs-vds+-gmuvusgmu称背栅跨导,称背栅跨导,工程上工程上

19、为常数,为常数,一般一般 =0.10.2。29第29页,共50页,编辑于2022年,星期一qMOS管高频小信号电路模型管高频小信号电路模型当当高高频频应应用用、需需计计及及管管子子极极间间电电容容影影响响时时,应应采采用用如如下高频等效电路模型。下高频等效电路模型。gmvgsrdsgdsidvgs-vds+-CdsCgdCgs栅源极间栅源极间平板电容平板电容漏源极间电容漏源极间电容(漏衬与源漏衬与源衬之间的势垒电容衬之间的势垒电容)栅漏极间栅漏极间平板电容平板电容30第30页,共50页,编辑于2022年,星期一场场效效应应管管电电路路分分析析方方法法与与三三极极管管电电路路分分析析方方法法相相

20、似似,可可以以采采用用估估算算法法分分析析电电路路直直流流工工作作点点;采采用用小小信信号号等等效效电电路路法法分析电路动态指标。分析电路动态指标。3.1.5MOS管电路分析方法管电路分析方法场场效效应应管管估估算算法法分分析析思思路路与与三三极极管管相相同同,只只是是由由于于两两种种管管子子工工作作原原理理不不同同,从从而而使使外外部部工工作作条条件件有有明明显显差差异异。因此用估算法分析场效应管电路时,一定要注意自身特点。因此用估算法分析场效应管电路时,一定要注意自身特点。q 估算法估算法31第31页,共50页,编辑于2022年,星期一 MOS管管截止模式判断方法截止模式判断方法假定假定M

21、OS管工作在放大模式:管工作在放大模式:放大模式放大模式非饱和模式非饱和模式(需重新需重新计算计算Q点点)N沟道管:沟道管:VGSVGS(th)截止条件截止条件 非饱和与饱和非饱和与饱和(放大放大)模式判断方法模式判断方法a)由直流通路写出管外电路由直流通路写出管外电路VGS与与ID之间关系式。之间关系式。c)联立解上述方程,选出合理的一组解。联立解上述方程,选出合理的一组解。d)判断电路工作模式:判断电路工作模式:若若|VDS|VGSVGS(th)|若若|VDS|VGSVGS(th),VGSVGS(th),假设成立。假设成立。33第33页,共50页,编辑于2022年,星期一q 小信号等效电路

22、法小信号等效电路法场效应管小信号等效电路分法与三极管相似。场效应管小信号等效电路分法与三极管相似。利用微变等效电路分析交流指标。利用微变等效电路分析交流指标。画交流通路;画交流通路;将将FET用小信号电路模型代替;用小信号电路模型代替;计算微变参数计算微变参数gm、rds;注:具体分析将在第注:具体分析将在第4章中详细介绍。章中详细介绍。34第34页,共50页,编辑于2022年,星期一3.2结型场效应管结型场效应管qJFET结构示意图及电路符号结构示意图及电路符号SGDSGDP+P+NGSDN沟道沟道JFETP沟道沟道JFETN+N+PGSD35第35页,共50页,编辑于2022年,星期一q

23、N沟道沟道JFET管管外部工作条件外部工作条件 VDS0(保证栅漏保证栅漏PN结反偏结反偏)VGSVGS(off)VDSVGS(off)VDSVGSVGS(off)在饱和区,在饱和区,JFET的的ID与与VGS之间也满足平方律关系,但之间也满足平方律关系,但由于由于JFET与与MOS管结构不同,故方程不同。管结构不同,故方程不同。42第42页,共50页,编辑于2022年,星期一q 截止区截止区特点:特点:沟道全夹断的工作区沟道全夹断的工作区条件:条件:VGS0,ID流入管子漏极。流入管子漏极。P沟道沟道FET:VDS vGSvGS(th)因此因此当当vGSvGS(th)时时N沟道沟道EMOS管

24、管工作在饱和区。工作在饱和区。伏安特性:伏安特性:iDvGSVQIQQ直流电阻:直流电阻:(小小)交流电阻:交流电阻:(大大)Tvi+-+-vRi48第48页,共50页,编辑于2022年,星期一q N沟道沟道 DMOS管管 GS相连相连构成有源电阻构成有源电阻v=vDS,vGS=0,i=iD由图由图因此,当因此,当vDS 0vGS(th)时,管子工作在饱和区。时,管子工作在饱和区。伏安特性即伏安特性即vGS=0时的输出特性。时的输出特性。由由得知得知当当vGS=0时,电路近似恒流输出。时,电路近似恒流输出。iDvDSVQIQQ-VGS(th)vGS=0Tvi+-+-vRi49第49页,共50页,编辑于2022年,星期一q 有源电阻有源电阻 构成分压器构成分压器若两管若两管 n、COX、VGS(th)相同,则相同,则联立求解得:联立求解得:T1V1I1+-I2V2+-VDDT2由图由图I1=I2V1+V2=VDDV1+V2=VDD调整沟道宽长比调整沟道宽长比(W/l),可得所需的分压值。可得所需的分压值。50第50页,共50页,编辑于2022年,星期一

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁