《烟台碳纤维项目建议书参考模板.docx》由会员分享,可在线阅读,更多相关《烟台碳纤维项目建议书参考模板.docx(145页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、泓域咨询/烟台碳纤维项目建议书烟台碳纤维项目建议书xx有限公司目录第一章 项目背景及必要性8一、 双碳战略有望成为碳纤维行业需求增长的核心动力8二、 政策加码利好发展,国产化替代前景广阔13三、 立足扩大内需,主动融入新发展格局15四、 构建富有竞争力的现代产业体系18第二章 市场预测22一、 碳纤维:性能优势突出,景气度持续上行22二、 现状:碳纤维景气度上行,主要驱动力来自24三、 体育休闲及汽车领域需求或稳定增长,压力容器有望保持较高景气度27第三章 项目总论30一、 项目名称及投资人30二、 编制原则30三、 编制依据30四、 编制范围及内容31五、 项目建设背景31六、 结论分析32
2、主要经济指标一览表34第四章 建筑工程可行性分析37一、 项目工程设计总体要求37二、 建设方案38三、 建筑工程建设指标39建筑工程投资一览表39第五章 项目选址方案41一、 项目选址原则41二、 建设区基本情况41三、 塑造国际合作和竞争新优势44四、 统筹推进区域协调发展47五、 项目选址综合评价49第六章 发展规划50一、 公司发展规划50二、 保障措施56第七章 SWOT分析说明58一、 优势分析(S)58二、 劣势分析(W)60三、 机会分析(O)60四、 威胁分析(T)61第八章 项目进度计划65一、 项目进度安排65项目实施进度计划一览表65二、 项目实施保障措施66第九章 项
3、目环境影响分析67一、 编制依据67二、 环境影响合理性分析67三、 建设期大气环境影响分析69四、 建设期水环境影响分析70五、 建设期固体废弃物环境影响分析71六、 建设期声环境影响分析71七、 建设期生态环境影响分析72八、 清洁生产73九、 环境管理分析74十、 环境影响结论78十一、 环境影响建议78第十章 项目节能说明80一、 项目节能概述80二、 能源消费种类和数量分析81能耗分析一览表82三、 项目节能措施82四、 节能综合评价84第十一章 工艺技术设计及设备选型方案85一、 企业技术研发分析85二、 项目技术工艺分析87三、 质量管理88四、 设备选型方案89主要设备购置一览
4、表90第十二章 原辅材料供应、成品管理91一、 项目建设期原辅材料供应情况91二、 项目运营期原辅材料供应及质量管理91第十三章 组织架构分析92一、 人力资源配置92劳动定员一览表92二、 员工技能培训92第十四章 投资方案分析94一、 投资估算的依据和说明94二、 建设投资估算95建设投资估算表99三、 建设期利息99建设期利息估算表99固定资产投资估算表101四、 流动资金101流动资金估算表102五、 项目总投资103总投资及构成一览表103六、 资金筹措与投资计划104项目投资计划与资金筹措一览表104第十五章 经济效益评价106一、 基本假设及基础参数选取106二、 经济评价财务测
5、算106营业收入、税金及附加和增值税估算表106综合总成本费用估算表108利润及利润分配表110三、 项目盈利能力分析110项目投资现金流量表112四、 财务生存能力分析113五、 偿债能力分析114借款还本付息计划表115六、 经济评价结论115第十六章 风险防范117一、 项目风险分析117二、 项目风险对策119第十七章 项目招标方案122一、 项目招标依据122二、 项目招标范围122三、 招标要求122四、 招标组织方式125五、 招标信息发布126第十八章 项目总结127第十九章 附表附件131营业收入、税金及附加和增值税估算表131综合总成本费用估算表131固定资产折旧费估算表1
6、32无形资产和其他资产摊销估算表133利润及利润分配表134项目投资现金流量表135借款还本付息计划表136建设投资估算表137建设投资估算表137建设期利息估算表138固定资产投资估算表139流动资金估算表140总投资及构成一览表141项目投资计划与资金筹措一览表142第一章 项目背景及必要性一、 双碳战略有望成为碳纤维行业需求增长的核心动力双碳战略推动光伏风电装机需求增长,风电叶片与单晶炉热场碳纤维应用有望成为需求增长核心动力。2021年全球已有130多个国家提出了“零碳”或“碳中和”气候目标,双碳目标下以光伏和风电为代表的清洁能源加速发展。据GWEC预测,2021-2026年全球风电新增
7、装机可达650.5GW,年均复合增长6.6%,其中海上风电新增装机111.7GW,占比达17.2%,中国风电新增装机可达280GW,年均复合增长率11.3%。中电联2021-2022年度全国电力供需形势分析预测报告预测2022年国内风电新增规模可达50GW,据国家能源局统计2021年海风新增装机16.9GW,2022年第一季度风电新增装机7.9GW,预计2021-2026年中国风电装机规模有望达到372GW,其中海上风电新增装机111.2GW;在此基础上参考GWEC预测,预计2021-2026年全球风电新增装机规模有望达到725.4GW,其中海上风电新增装机规模160.7GW。据CPIA预测,
8、2022-2025年全球光伏年均新增装机可达232-286GW,中国光伏年均新增装机可达83-99GW。参考中电联2021-2022年度全国电力供需形势分析预测报告预测2022年光伏新增规模有望达到90GW,国家能源局统计2022年一季度国内光伏新增装机13.2GW,预计未来全球及国内光伏装机量有望达到CPIA乐观预期。维斯塔斯风电叶片巧用拉挤板拼粘工艺促进碳纤维大规模使用,拉挤碳梁主要原材料为树脂及T300级24K、48K碳纤维。从风电叶片碳纤维发展历史看,最早采用经典的预浸料铺放,由于成本太过昂贵,通常用真空袋工艺,因此出现了生产效率低下,产品性能差等问题。后来借鉴玻璃纤维的工艺方法,采用
9、多层织物真空灌注,但是不同于单丝直径较粗的玻纤的浸润性,要想灌透多层的碳纤维织物,织物本身必须留出树脂的流道,这就导致织物需要特殊的技术,进而增加了成本,同时很难保证织物在树脂的冲击之下纤维的直线度,直接影响了复合材料的性能。当维斯塔斯采用了拉挤板拼粘方法后,无论性能还是成本都对预浸料铺放和多层织物灌注工艺展现出了压倒性的优势,碳纤维的用量飞速增长。据赛奥碳纤维,2019年风电叶片行业用碳纤维量超过2万吨,其中80%就是用于生产拉挤碳梁片材。据光威复材投资者调研纪要,风电碳梁的主要原材料为树脂及T300级24K、48K碳纤维。维斯塔斯碳梁叶片制作技术核心专利2022年7月到期,其他厂商跟进有望
10、提高碳纤维在叶片中渗透率。2002年7月19日维斯塔斯申请了风力涡轮机叶片专利(申请号CN02814543.7),提出了一种采用预制条带制造风电叶片的方法,其叶片主体采用玻璃纤维增强复合材料,叶片大梁采用碳纤维增强复合材料,相比传统制造技术有优良硬度和高强度同时又易于制造和低成本。2020年其他风电巨头如西门子-歌美飒、GE-LM、Nordex等,均在新的机型中采用了碳纤维拉挤板制造与测试样机。据光威复材投资者问答称,专利保护的不是碳梁的制作,光威拥有碳梁自主专利技术,目前已开展对国内风电叶片碳梁的应用推广。风机大型化推动碳纤维在叶片中渗透率不断提高。据GWEC2020全球叶片供应链报告统计,
11、2014-2019年全球平均风轮直径尺寸持续在增加。2014年直径为91m-110m的风轮装机量最高,占据全球市场份额的49.5%。在2019年该产品份额下降至10.7%,风轮直径121m-140m成为主流产品,占全球市场份额的52.5%。驱动风轮直径增长的动力主要是:风电主机厂不断推出更大风轮直径的产品以降低LCOE(平准化度电成本,即对项目生命周期内的成本和发电量先进行平准化,再计算得到的发电成本);陆上风电低风速区装机需求增加需要更大的风轮直径;以中国和欧洲为代表的风电叶片直径大于150m的海上风电装机需求增加。维斯塔斯目前所有产品叶片大梁均采用碳梁;据明阳智能年报披露风机MYSE3.0
12、-155开始在叶片中使用碳玻混合编织材料;据央视财经万吨碳纤维生产基地投产“黑黄金”价值凸显,中材科技董事长薛忠民表示目前风电叶片主流的结构材料还是玻璃纤维,正在开发的110米海上风电叶片必须使用碳纤维。影响碳纤维在风电叶片应用渗透率的关键因素或为碳纤维价格。据连云港中复连众复合材料集团有限公司专利一种采用拉挤工艺制造的单向片材制造风机叶片主梁或辅梁的方法,玻纤使用拉挤成型工艺制备得到的铺设片材铺设主梁或辅梁可有效提高材料的拉伸强度和弹性模量,同时能够减少叶片材料使用量,节约材料成本。据赛奥碳纤维,2022年3月,株洲时代最新发布的TMT185叶片长度达91米,全部使用玻璃纤维并适配4.5MW
13、到6.5MW机型。风电叶片企业非常清晰碳纤维的减重优势及趋势,2021年风电领域碳纤维需求同比增速放缓主要受制于成本。据北极星风力发电网预计,碳纤维降低到80元/kg下游厂商的接受度会比较高,有望迎来大规模应用。装机增长叠加碳纤维渗透率提升,预计2026年国内风电领域碳纤维需求有望达到12.69万吨。结合前文对风电行业需求端的分析,基于以下假设对风电领域碳纤维需求进行测算:(1)参照基于工程经济学评估的风力机叶片长度设计拟合结果与明阳智能风机叶片参数,假设风电叶片重量与长度关系为=0.5272.473;(2)参考北极星风力发电网数据,主梁占叶片重量的1/3,拉挤工艺中主梁纤维含量为75%;(3
14、)根据风能吸收公式=0.532,风力发电机功率P正比于风电叶片长度R的平方。(4)假设陆风平均单机容量按照每年0.5MW上升,海风平均单机容量按照每年1MW上升。(5)假设碳纤维成本逐渐下降能够满足风电大规模应用。(6)据赛奥碳纤维估计2021年全球风电碳纤维用量中维斯塔斯2.5万吨,国内风电企业0.45万吨,欧美其他风电企业0.35万吨,国内碳纤维用量2.25万吨,暂不考虑欧美其他风电企业国内碳纤维用量,估计2021年维斯塔斯国内碳纤维消耗1.8万吨,参考GWEC预计,国外风电装机CAGR月3.92%,假设维斯塔斯维持市占率不变。双碳目标推动光伏装机增长,单晶炉碳碳热场材料需求增长带动碳纤维
15、需求。光伏行业竞争激烈,成本压力显著,采用碳纤维制作的碳碳复合材料相比传统石墨材料具有更优异的保温性能、更高的强度、更好的韧性,且不易破碎,可有效降低生产能耗、提升设备使用寿命,从而降低整个生产的成本。碳碳复合材料热场部件主要包括坩埚、导流筒、保温筒、加热器等,是单晶拉制炉热场系统的关键部件,在性价比方面相比传统石墨材质展现出了非常大的优势。受2021年碳碳复材领域碳纤维需求为8500吨,据2021全球碳纤维复合材料市场报告预测,未来4年碳碳复材领域全球碳纤维需求增速有望达到30%。随着光伏装机增长以及碳碳热场部件渗透率增加,预计2025年中国碳碳热场领域碳纤维市场规模有望达到12亿元。(1)
16、假设容配比为1.15;(2)根据2020年和2021年单晶硅片市占率情况,假设2022-2025年单晶硅片的市占率为98%;(3)根据隆基股份2021年产能利用率情况,假设2022-2025年单晶硅片产能利用率分别为65%/60%/60%/60%;(4)随着单晶硅拉制炉容量的快速增大,热场尺寸也随之增大,假设2020年热场尺寸为26英寸,直径每年增加1英寸,坩埚密度和厚度不变,则坩埚重量随直径扩大而相应扩大,假设热场其他部件重量同坩埚重量等比例扩大;(5)由于热场尺寸不断增大,单晶炉产出提升,根据包头美科二期建设数据,假设每GW所需单晶炉从2020年的约90台,逐年下降5台,至2025年65台
17、;(6)坩埚消耗量为2件/年、导流筒消耗量为0.67件/年、保温筒消耗量为0.67件/年、加热器消耗量为3件/年;(7)根据2019与2020年各产品的测算渗透率,预计2020年碳碳复合材料坩埚渗透率为95%,并每年增加1%、导流筒渗透率为60%,并每年增加5%、保温筒渗透率为55%,并每年增加5%、加热器渗透率为5%,并每年增加1%;(8)假设2021年存量硅片改造比例为20%,并每年减少2%;(9)根据奥赛纤维2021全球碳纤维复合材料市场报告,假设碳碳热场领域碳纤维单价为21.6美元/千克,即14.36万元/吨;(10)假设碳碳复材中碳纤维占比90%。二、 政策加码利好发展,国产化替代前
18、景广阔碳纤维是军民两用材料,高端碳纤维自力更生是唯一途径。T800与M60J及以上规格碳纤维由于在国防军工领域具有重要应用,美日对我国采取严格的军事禁运,因此高性能碳纤维的国产自主化生产是唯一途径。近年来,我国推出了诸多新政策以促进碳纤维产业的发展,并且开始为碳纤维产业配套专项扶持基金。2017年4月,国家科技部下发“十三五”材料领域科技创新专项规划,规划提出要以高性能纤维及复合材料、高温合金为核心,突破结构与复合材料制备及应用的关键共性技术,提升先进结构材料的保障能力和国际竞争力。2021年3月,十三届全国人大四次会议通过了中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标
19、纲要,纲要中提出要在高端新材料领域加强碳纤维等材料的研发应用,各地政府密集出台相关政策支持碳纤维产业发展。2021年9月,科技部拟推动建立碳纤维及其复合材料国家技术创新中心,在政府引导下,联合碳纤维及复合材料企业、高校、科研院所,突破全产业链共性技术,突破关系国家长远发展和产业安全的关键技术瓶颈,支持碳纤维及复合材料企业实现技术、技术装备和产品创新。碳纤维国产化占比逐年提升由2015年的15%上升至2021年的47%,主要受益于产能扩张与技术水平提升带来的产能利用率增加。我国碳纤维行业前期“有产能,无产量”现象严重,产能利用率较低,虽然规划及在建产能较大,但实际产量却较少,主要由于涌入碳纤维行
20、业的大多数企业在一些关键技术上无突破,生产线运行及产品质量不稳定导致。但随着碳纤维企业整体技术水平的不断提升,产能利用率呈现出不断增长的趋势。2021年国内达产率下滑或因吉林化纤、中复神鹰、新创碳谷的产能建设完成是在下半年或年底,正常生产时间不足。三、 立足扩大内需,主动融入新发展格局以创新驱动、高质量供给引领和创造新需求,促进消费与投资协调互动、供给与需求动态平衡、国内市场与国际市场相互贯通,形成全方位全要素、高能级高效率的双循环。1、更快融入国内大循环。提升高端要素集聚、协同、联动能力,畅通市场、资源、技术、人才、产业、资本等高端要素循环。坚决破除妨碍生产要素市场化配置和商品服务流通的结构
21、性、机制性障碍,畅通生产、分配、流通、消费各环节,降低各类交易成本。实施质量强市和品牌战略,加强标准、计量、专利等体系和能力建设,扩大中高端供给,提升我市供给体系对国内需求的适配性。推动金融、房地产同实体经济均衡发展。完善现代综合运输体系、现代商贸流通体系、应急物流体系,大力发展航空物流、高铁快运及电商快递,培育具有较强竞争力的现代流通企业。2、积极参与国内国际双循环。充分利用国内国际两个市场两种资源,优化市场布局、商品结构、贸易方式,推进内外经贸一体化协同发展。促进内外贸质量标准、认证认可相衔接,推进同线同标同质。用好山东自贸区烟台片区改革试点经验,实行准入前国民待遇和市场准入负面清单制度,
22、建设更高水平的国际贸易“单一窗口”,促进贸易自由化和投资便利化。积极参与国际互联互通大通道建设,推动烟台港、蓬莱国际机场与日韩主要口岸建立“多港联动”合作机制,提升“齐鲁号”欧亚班列密度和效率。3、充分激发消费潜力。加快实物消费、服务消费提质升级,扩大居民消费,适当增加公共消费,培育消费新模式新业态,促进线上线下消费融合发展。推动消费品提升质量,保护和发展老字号品牌,优化城乡商业网点布局,加快推进成熟商圈提档升级,大力发展县域消费聚集区。健全城市和农村配送网络,加快电商、快递进农村。推动汽车等消费品由购买管理向使用管理转变,促进住房消费健康发展。突破发展康养产业,建设一批康养小镇、康养社区。建
23、设高品质步行街和旅游休闲综合体。大力发展夜间经济,丰富夜间经济消费业态,打造一批夜间经济聚集区。开展“放心消费在烟台”活动,改善消费环境。建立鼓励消费政策体系,放宽服务消费领域市场准入,加快消费金融创新,发展免税经济。实行错峰休假和弹性作息,落实带薪休假制度。4、持续扩大有效投资。优化投资结构,保持投资合理增长。围绕提升优势产业核心竞争力,建设一批增强基础能力、保障链条安全的示范性重大工程。以提高“亩产效益”为导向,深化“要素跟着项目走”,推动资源要素向优质高效投资领域流动。支持企业设备更新和技术改造,扩大战略性新兴产业投资。实施重大项目带动战略,抓好一批重大工程项目建设。发挥政府投资撬动作用
24、,用好各类政府产业引导基金和政府债券,推广PPP模式、政府股权投资等方式,建立合理投资回报机制和多样化退出机制。激发民间投资活力,鼓励民企参与国企混改、公用事业和重大基础设施建设。5、强化基础设施战略支撑。推进“两新一重”建设,补齐基础设施、市政工程、农业农村、公共安全、生态环保、公共卫生、物资储备、防灾减灾、人防工程、民生保障等短板。构建系统完备、高效实用、智能绿色、安全可靠的现代化基础设施体系。推进新型基础设施建设,加速5G基站布局和商用,建设大型绿色数据中心,创建新型智慧城市。完善陆海空综合立体交通体系,建设潍烟高铁、莱荣高铁、青岛(即墨)至海阳市域铁路、青岛(平度)至莱州城际铁路、城市
25、轨道交通,推进干线铁路、城际铁路、市域铁路、城市轨道交通“四网融合”,建设蓬莱国际机场二期工程和县域通用机场,实施威海至烟台公路改扩建、莱牟高速、莱青高速、G18荣乌高速烟台绕城段改扩建工程,织密高速路网,建设中心城区快速路,提高公路通达能力。推进能源革命,大力发展新能源、可再生能源,稳步推进海阳核电等核能利用,加快布局LNG、成品油储输设施,加强智慧能源互联网建设,打造清洁能源综合利用示范市。健全供水保障体系,推进老岚水库、卧龙水库及中水回用等水利工程,布局更多中小水库和塘坝,提升水资源优化配置和水旱灾害防御能力。四、 构建富有竞争力的现代产业体系以产业基础高级化、产业链现代化为主攻方向,按
26、照“培育一批新兴产业、改造一批传统产业、淘汰一批落后产能”的思路,推动“腾笼换鸟、凤凰涅槃”,构建以战略性新兴产业为先导、先进制造业为主体、现代服务业为支撑的现代产业体系。(一)集群化发展优势产业以链条化、集群化为方向,推动高端化工、生物医药、汽车及汽配、食品加工、海工装备制造、航空航天等产业强链补链延链,促进有色及贵金属、电子信息、新能源等产业壮大规模、提升素质,打造优势产业集群。补齐产业链供应链短板,加强重要产品和关键核心技术攻关,推动产业链供应链多元化,提升产业链供应链现代化水平。建设裕龙岛高端石化基地、万华新材料产业基地、高端海工装备基地、8K超高清技术产业基地,建设卫星互联网产业园、
27、生物医药系列产业园、国家检验检测高技术服务业集聚区,建设具有国际竞争力的产业生态圈和区域带动力的产业功能区。(二)促进产业转型升级推动化工产业向绿色高端转型,装备制造向智能制造转型,食品加工向专精特色加工转型,电子信息向新一代信息技术转型,汽车制造向新能源汽车转型,有色及贵金属向新材料研发应用转型。坚决淘汰落后产能,严格落实环保、质量、能耗、安全等国家行业标准和产业政策,依法依规倒逼落后产能加速退出,严控新增过剩产能。精准制定企业分类综合评价体系,持续整治散乱污企业,鼓励企业通过产能置换、指标交易、股权合作等方式兼并重组。(三)集约化发展新兴产业聚焦航天装备制造、超高清视频显示、数字创意、人工
28、智能、无人驾驶、绿色环保等新兴产业,布局专业化园区或楼宇,推动新兴产业快速聚集成势。积极培育新技术、新产品、新业态、新模式,引导平台经济、共享经济、体验经济、创意经济加快发展。推动产业融合发展,培育一批服务型制造示范企业,壮大服务型制造等产业规模。(四)突破发展现代服务业生产性服务业要向专业化和价值链高端延伸,生活性服务业要向高品质和多样化升级,公共服务业要向普惠性和均等化发展。加快建设芝罘仙境、海上世界、葡萄酒小镇等一批重点文旅项目,形成“一带两核三仙境”旅游发展格局。办好2021山东省旅游发展大会、世界工业设计大会、中国山东国际苹果节、国际技术交易大会、国际葡萄酒节、国际果蔬食品博览会等一
29、批知名品牌展会和特色展会,建设国际会展名城。推进居住组团、商业组团联动开发,布局配套大体量、多业态、复合型商业综合体。面向大众培育快捷便民消费,建设便民利民店,实现“便利服务进社区、便民消费进家庭”。加强教育、医疗等公益性、基础性服务业供给。发展服务业新业态,培育工业设计、现代物流、现代金融等高端服务业态。提升国家跨境电商综合试验区、山东省区域性基金管理中心建设水平。推进服务业标准化、品牌化建设。(五)加快发展数字经济推进数字产业化,建立新一代数字产业体系,做大大数据、云计算等引领产业,布局虚拟现实、区块链等未来产业,发展集成电路、高端软件等基础产业,打造一批具有较强竞争力的数字产业集群。推进
30、产业数字化,加快数字经济与实体经济融合发展,推动企业数字化转型,支持企业“上云用数赋智”,示范推广一批智能制造、智慧海洋、智慧农业、智慧旅游等数字化应用场景。以提升供给能力和应用水平为核心,打造工业互联网产业生态体系。规模化部署5G基站和通信网络配套设施,打造具有烟台特色的5G产业集群,建设全国5G网络先行区。加强数字社会、数字政府建设,提升公共服务、社会治理等智能化水平。第二章 市场预测一、 碳纤维:性能优势突出,景气度持续上行碳纤维(CarbonFiber)是由聚丙烯腈(PAN)(或沥青、粘胶)等有机纤维在高温环境下裂解碳化形成的含碳量高于90%的碳主链结构无机纤维。碳纤维具备出色的力学性
31、能和化学稳定性,密度比铝低、强度比钢高,是目前量产的高性能纤维中具有最高的比强度和比模量的纤维,具有质轻、高强度、高模量、导电、导热、耐腐蚀、耐疲劳、耐高温、膨胀系数小等一系列其他材料所不可替代的优良性能,在航空航天、风电叶片、体育休闲、压力容器、碳/碳复合材料、交通建设等领域应用广泛。碳纤维可以按照原丝类型、形态、力学性能等不同维度进行分类,按照原丝种类分类聚丙烯腈(PAN)基碳纤维占据主流地位,产量占碳纤维总量的90%以上。因此,目前碳纤维一般指PAN基碳纤维。PAN基碳纤维的制备过程一般分为原丝制备和碳丝制备两个阶段,其中原丝制备包括聚合、纺丝工段,碳丝制备包括预氧化、碳化工段。日本东丽
32、作为全球唯一碳纤维产能超过2万吨的企业,是全球碳纤维领域龙头。业内主要采用力学性能对碳纤维进行产品分类,分类标准主要参考日本东丽的牌号,并以此为基础确定自身产品的牌号及级别。按表2分类,根据美日两国目前的法令,除高强型外,其余产品型号均禁止对华出口。标模碳纤维有大小丝束的区分,标模以上碳纤维以小丝束为主。据中国复合材料学会,截至2020年8月,标模碳纤维有大丝束与小丝束的区分,标模以上的碳纤维尚无大丝束出现。据SGL,其SIGRAFILCT50-4.8/280牌号50K大丝束碳纤维拉伸强度4800MPa,弹性模量280GPa,已满足国标高强中模型QZ4526标准。未来国产大丝束有望向中模的方向
33、发展,为航空航天、风电叶片和新能源汽车领域带来更多轻量化应用。据赛奥碳纤维,2021年全球碳纤维需求中大丝束为5.14万吨,占比43.6%,小丝束为6.66万吨,占比56.4%。完整的碳纤维产业链包含从一次能源到终端应用的完整制造过程。原油经纯化裂解后制取丙烯;丙烯经氨氧化后得到丙烯腈,丙烯腈聚合和纺丝之后得到聚丙烯腈(PAN)原丝,再经过预氧化、低温和高温碳化后得到碳纤维,并可制成碳纤维织物和碳纤维预浸料,作为生产碳纤维复合材料的原材料;碳纤维经与树脂、陶瓷等材料结合,形成碳纤维复合材料,最后由各种成型工艺得到下游应用需要的最终产品。国外碳纤维巨头对国内采取高端封锁、低端倾销策略,压制国内碳
34、纤维产业发展。国外巨头利用其技术垄断和规模化生产优势,对我国高端碳纤维领域采取技术封锁策略,对原丝产品、核心技术和关键设备严格控制。在技术、人才、设备的三重严苛封锁下,国内主要依靠自力更生。在低端碳纤维领域国外巨头采取低价倾销的销售策略,致使国内大部分碳纤维生产企业技术水平落后,经营业绩长期处于亏损状态。PAN基碳纤维复合材料的高成本主要集中在原丝的生产成本较高、生产流程长和复合材料制备成本高等方面,据碳纤维低成本制备技术2011,PAN基碳纤维原丝的成本约占总成本的51%。PAN原丝的质量直接决定最终碳纤维产品质量、产量和生产成本。PAN基碳纤维原丝的生产过程中首先将丙烯腈单体聚合制成纺丝原
35、液,然后纺丝成型。按照聚合工艺的连续性可以分为一步法和两步法;按照纺丝工艺可以分为湿法和干喷湿纺法。聚合工艺的两步法会加大生产成本,容易引入杂质,且聚合物粒径较大不易制得高性能PAN原丝,较少用于小丝束碳纤维原丝生产。干喷湿纺具备纺丝速度快、碳纤维强度高等优点,湿法纺丝可通过提高纤维与树脂间的机械啮合改善复材界面性能。干喷湿纺可实现高速纺丝,比湿法快2-8倍,制备的原丝密度较高且表面平整光滑,原丝的截面均一性明显好于湿法纺丝,并且制备的碳纤维强度也较高。据国产T800级碳纤维复合材料力学性能,湿法纺丝工艺条件下原丝成型过程中会形成轴向沟槽并遗传给碳纤维,根据复合材料界面的粘结理论,碳纤维表面沟
36、槽有利于提高纤维与树脂间的机械啮合作用,一定程度可以提高复合材料界面性能。二、 现状:碳纤维景气度上行,主要驱动力来自2015-2021年全球碳纤维需求年均复合增速达14.3%,中国碳纤维需求年均复合增速达24.5%。据赛奥碳纤维,2016-2019年全球碳纤维需求保持10%以上增长,在主要下游应用领域中,航空航天、体育休闲、汽车、混配模成型、压力容器、建筑补强等领域增速较为稳定,风电叶片、碳碳复材应用领域增长迅速。2020年受新冠疫情影响,航空复材领域需求大幅度降低,但风电叶片与碳碳复材领域碳纤维需求仍保持较高增速,整体碳纤维需求增速有所下滑,2021年风电、体育器材、碳碳复材及压力容器成为
37、碳纤维需求增长的主力,推动碳纤维行业需求增速回升至10%以上。国内碳纤维需求从2015年的1.68万吨增长至2021年的6.24万吨,全球占比从31.7%提升至52.9%,年均复合增速达24.5%。2020年全球碳纤维市场规模下降主要源于碳纤维价值量占比较高的航空航天领域受到新冠疫情影响,航空复材领域需求大幅度降低,2021年市场规模上升幅度较大主要因为碳纤维供给不足,市场处于紧缺状态,碳纤维价格持续上行。从需求结构上看,2021年全球碳纤维需求量占比前三的领域依次是风电叶片28%、体育休闲16%、航空航天14%,国内碳纤维需求量占比前三的领域依次是风电叶片36%、体育休闲28%、碳碳复材11
38、%。航空航天领域碳纤维附加值高,全球市场规模占比达35%,风电叶片与体育休闲领域碳纤维应用主要集中在中国。据赛奥碳纤维,2021年在航空航天领域应用的碳纤维价格为72美元/kg,体育休闲、电子电气、船舶、电缆芯领域为27.6美元/kg,压力容器、建筑领域为24美元/kg,风电领域为16.8美元/kg,碳碳复材、汽车、混配模成型为21.6美元/kg,以此计算全球与中国2021年市场结构,可以看出航空航天领域碳纤维附加值较高,全球市场规模占比达35%。风电叶片2021年全球碳纤维市场规模达5.54亿美元,其中中国为3.78亿美元,占比达68.2%。体育休闲2021年全球碳纤维市场规模达5.11亿美
39、元,其中中国为4.83亿美元,占比达94.6%。全球碳纤维市场中占比前三的领域依次是航空航天、风电叶片、体育休闲,国内比前三的领域依次是体育休闲、风电叶片、碳碳复材。维斯塔斯在风电领域创新性的使用大丝束碳纤维促进了风电领域碳纤维需求的快速增长。使用碳纤维材料的风电叶片具备刚度高、重量轻、抗疲劳能力强等一系列优点。在2015年前,碳纤维应用在风电叶片的工艺主要采用预浸料或织物的真空导入,部分采用小丝束碳纤维,使用的碳纤维平均价格为23美元/kg,2016年维斯塔斯创新性地使用了大丝束碳纤维拉挤梁片,使用的碳纤维平均价格降低至14美元/kg。使用碳纤维的平均价格降低使得风电叶片碳纤维复合材料制品价
40、格大幅降价,风电叶片碳纤维用量急剧增长。2021年风电装机报价的大幅下降叠加原材料成本上升挤压了风电产业链的利润,使得维斯塔斯及国内外众多计划采用碳纤维的企业的需求有所放缓。维斯塔斯风电叶片用碳梁部分交由国内的供应商光威复材和江苏澳盛加工,有效带动了国内风电领域碳纤维需求,但目前国内碳梁加工仍处于风电大丝束进口约85%,碳梁出口约85%这种两头在外的局面。碳碳热场部件需求高速增长驱动碳碳复材领域碳纤维需求上行。碳碳复材下游应用主要包括刹车盘市场、航天部件市场和碳碳热场部件市场。刹车盘市场、航天部件市场保持平稳发展。碳碳热场部件主要为单晶硅炉内的碳毡功能材料和坩埚、保温桶、护盘等,受“碳达峰、碳
41、中和”目标推动,光伏企业隆基、晶科、中环、晶胜机电、晶澳大量采购单晶硅炉推动碳纤维需求上行。三、 体育休闲及汽车领域需求或稳定增长,压力容器有望保持较高景气度据赛奥碳纤维预计,体育休闲领域碳纤维需求有望保持5%年均复合增长率。体育领域碳纤维主要用于球杆球拍、滑雪杆、自行车及钓鱼竿等,通常每年按照4%-5%稳定增长。2020年受疫情影响,群体运动器材大幅下滑,个人运动休闲器材有所上升,整体增速有所回落。2021年,部分国家开始放开群体运动,体育器材需求回升,全球需求由2020年的1.54万吨增加至2021年1.85万吨,同比增长20.13%。后续有望保持5%年均复合增长。双碳目标促进汽车节能减排
42、,据赛奥碳纤维预计汽车领域碳纤维需求有望达到10%年均复合增长。碳纤维复合材料应用于汽车领域具有质量轻、强度高、抗冲击性好、减震隔音性能高的优势。同时还可以提高汽车集成度,减少零部件,有助于降低汽车生产线投资规模。当前碳纤维复合材料在汽车领域应用进程缓慢的主要原因是成本较高。2021年的市场需求为9500吨,对比2020年的12500吨,降低3000吨,其主要原因是宝马公司在2020年底停产复合材料车型I8,在2021年7月停产了I3。从全周期轻量化价值出发,碳纤维复材除了节能降本外,在绿色环保方面十分有优势,当前有从F1赛车、豪华车逐步扩大应用的趋势。2020年推出的雪佛兰C8车架部分采用了
43、弧形拉挤的碳纤维复合材料。2021年3月,廊坊的飞泽复材为蔚来ES6(中国第一款批量采用碳纤维的车款)生产的5万套碳纤维复材后地板开始下线。全球压力容器领域碳纤维需求有望达到20%年均复合增长率。高压气态储氢是目前唯一商用的储氢技术,正不断朝着轻质高压、高质量/体积储氢密度方向发展。为推进氢能技术产业化,2018-2020年国家重点研发计划启动实施“可再生能源与氢能技术”重点专项。其中科技部通过“可再生能源与氢能技术”重点专项部署了27个氢能研发项目,研发经费投入约5亿元。2020年12月,斯林达车用IV型储氢瓶通过“三新”评审,成为国内首家通过“三新”评审的车用压缩氢气塑料内胆碳纤维全缠绕气
44、瓶制造厂家。根据相关政策以及预测,2022年,中国将至少新增10,000辆氢能源车,据美国能源部测算,高压氢气瓶采用碳纤维要实现规模经济效益需要性能达到T700或以上的同时价格达到12.6美元/kg。截至2025年我国氢燃料电池汽车总计规划推广数量达6.6万辆,有望全部落地助推氢能产业发展。2021年812月,国内五大氢燃料电池汽车示范城市群落地,山东省“氢进万家”科技示范项目正式实施。从各个示范城市群的规划目标来看,到2025年,预计可以推广超3.8万辆氢燃料电池汽车。据高工氢电统计,截至到2025年,我国氢燃料电池汽车总计规划推广数量可达6.6万辆。第三章 项目总论一、 项目名称及投资人(
45、一)项目名称烟台碳纤维项目(二)项目投资人xx有限公司(三)建设地点本期项目选址位于xx园区。二、 编制原则1、立足于本地区产业发展的客观条件,以集约化、产业化、科技化为手段,组织生产建设,提高企业经济效益和社会效益,实现可持续发展的大目标。2、因地制宜、统筹安排、节省投资、加快进度。三、 编制依据1、中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要;2、中国制造2025;3、建设项目经济评价方法与参数及使用手册(第三版);4、项目公司提供的发展规划、有关资料及相关数据等。四、 编制范围及内容按照项目建设公司的发展规划,依据有关规定,就本项目提出的背景及建设的必要性、建
46、设条件、市场供需状况与销售方案、建设方案、环境影响、项目组织与管理、投资估算与资金筹措、财务分析、社会效益等内容进行分析研究,并提出研究结论。五、 项目建设背景中电联2021-2022年度全国电力供需形势分析预测报告预测2022年国内风电新增规模可达50GW,据国家能源局统计2021年海风新增装机16.9GW,2022年第一季度风电新增装机7.9GW,预计2021-2026年中国风电装机规模有望达到372GW,其中海上风电新增装机111.2GW;在此基础上参考GWEC预测,预计2021-2026年全球风电新增装机规模有望达到725.4GW,其中海上风电新增装机规模160.7GW。据CPIA预测
47、,2022-2025年全球光伏年均新增装机可达232-286GW,中国光伏年均新增装机可达83-99GW。参考中电联2021-2022年度全国电力供需形势分析预测报告预测2022年光伏新增规模有望达到90GW,国家能源局统计2022年一季度国内光伏新增装机13.2GW,预计未来全球及国内光伏装机量有望达到CPIA乐观预期。维斯塔斯风电叶片巧用拉挤板拼粘工艺促进碳纤维大规模使用,拉挤碳梁主要原材料为树脂及T300级24K、48K碳纤维。从风电叶片碳纤维发展历史看,最早采用经典的预浸料铺放,由于成本太过昂贵,通常用真空袋工艺,因此出现了生产效率低下,产品性能差等问题。后来借鉴玻璃纤维的工艺方法,采
48、用多层织物真空灌注,但是不同于单丝直径较粗的玻纤的浸润性,要想灌透多层的碳纤维织物,织物本身必须留出树脂的流道,这就导致织物需要特殊的技术,进而增加了成本,同时很难保证织物在树脂的冲击之下纤维的直线度,直接影响了复合材料的性能。当维斯塔斯采用了拉挤板拼粘方法后,无论性能还是成本都对预浸料铺放和多层织物灌注工艺展现出了压倒性的优势,碳纤维的用量飞速增长。据赛奥碳纤维,2019年风电叶片行业用碳纤维量超过2万吨,其中80%就是用于生产拉挤碳梁片材。据光威复材投资者调研纪要,风电碳梁的主要原材料为树脂及T300级24K、48K碳纤维。六、 结论分析(一)项目选址本期项目选址位于xx园区,占地面积约6