光粒子性和电子波动性.ppt

上传人:石*** 文档编号:43310544 上传时间:2022-09-17 格式:PPT 页数:88 大小:3.79MB
返回 下载 相关 举报
光粒子性和电子波动性.ppt_第1页
第1页 / 共88页
光粒子性和电子波动性.ppt_第2页
第2页 / 共88页
点击查看更多>>
资源描述

《光粒子性和电子波动性.ppt》由会员分享,可在线阅读,更多相关《光粒子性和电子波动性.ppt(88页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、关于光的粒子性和电子的波动性第一张,PPT共八十八页,创作于2022年6月l物体不仅有热辐射现象,对光也会有吸收现象。通常用吸收系数 l(,T T)来表示物体的吸收本领。l它定义为物体在温度T时,有波长为的光入射,被物体吸收的该波长的光能量与入射的该波长的光能量之比。l如果 (,T)=1,我们就称这种物体叫黑体.l黑体能够吸收射到它表面的全部电磁辐射l2 2第二张,PPT共八十八页,创作于2022年6月图图1.1.1 1.1.1 空腔小孔空腔小孔向远处观察向远处观察打开的窗子打开的窗子近似黑体近似黑体l3 3第三张,PPT共八十八页,创作于2022年6月红外夜视仪红外夜视仪l4 4第四张,PP

2、T共八十八页,创作于2022年6月l5 5第五张,PPT共八十八页,创作于2022年6月1859年基尔霍夫(GRKirchhoff)指出:任何物体在同一温度T下的辐射本领r(,T)与吸收本领(,T)成正比,其比值只与和T有关:l6 6第六张,PPT共八十八页,创作于2022年6月l(,T)也表示物体在也表示物体在 附近附近+d 单位频率间隔辐射的单位频率间隔辐射的能量能量l7 7第七张,PPT共八十八页,创作于2022年6月l对吸收本领(,T T)=1)=1的绝对黑体,只要测出其发射本领r(,T),就得到热辐射能量谱(,T),。有时将热辐射能量谱表示成波长和温度的函数(,T)。如图1.1.2给

3、出了不同温度下黑体辐射的能谱分布曲线。l对吸收本领(,T T)=1)=1的绝对黑体,l8 8第八张,PPT共八十八页,创作于2022年6月l图图1.1.21.1.2黑黑 体体 辐辐 射射 谱谱 l9 9第九张,PPT共八十八页,创作于2022年6月l(1)(1)每条曲线都只由温度决定,与腔壁的材料无关。每条曲线都只由温度决定,与腔壁的材料无关。l(2)(2)每每条条曲曲线线都都有有一一个个极极大大值值,其其相相应应的的波波长长设设为为,maxmax,随随着着温温度度T T的的增增加加,maxmax的的值值减减小小,与与绝绝对对温温度度T T成成反反比比:mamax xT T=b=b (1.1.

4、2)(1.1.2)l其其中中b b是是一一个个常常数数b=2897.756mkb=2897.756mk。18931893年年维维恩恩(WWien)(WWien)曾曾在在理理论论上上推推导导出出这这一一结结果果,因因此此式式(1.1.2)(1.1.2)称称为为维维恩恩定定律律。l(3)(3)黑体辐射的总辐射本领与它的绝对温度的四次方成正比黑体辐射的总辐射本领与它的绝对温度的四次方成正比dl上式称为斯忒藩玻耳兹曼(Stefan-Boltzman)定律。l黑体辐射谱的几点结论l1010第十张,PPT共八十八页,创作于2022年6月1.1.2黑体辐射的经典理论公式l维恩黑体辐射的能量分布经验关系式:l

5、瑞利与金斯利用经典电动力学和统计物理学得到黑体辐射公式l l(1.1.5)(1.1.5)l1111第十一张,PPT共八十八页,创作于2022年6月l瑞利和金斯首先认为空腔内的电磁辐射形成一切可能形成的驻波,其节点在空腔壁处,由此得到辐射场中单位体积内频率 附近单位频率间隔内电磁辐射的振动模数:l(1.1.6)(1.1.6)根据经典的能量均分定理,当系统处于热平衡时,经典的玻尔兹曼分布律仍可应用,每一个简谐振子的能量可以在O到之间连续取值,则一个振动自由度的平均能量为:l1212第十二张,PPT共八十八页,创作于2022年6月l(1.1.7)(1.1.7)由此得到瑞利与金斯公式由此得到瑞利与金斯

6、公式,当频率较低时,瑞利金斯定律的理论值与实验结果符合较好,频率较高时,就与实验结果有很大差异,在紫外端发散,这就是当时物理学界所称的“紫外灾难”,见图1.1.3各黑体辐射公式与试验的比较.l(1.1.8)l1313第十三张,PPT共八十八页,创作于2022年6月l1.1.3普朗克公式以及能量子假设l1900年普朗克(MPlanck)在德国物理学会年会上提出一个黑体辐射能量分布公式l(1.1.9)(1.1.9)普朗克提出了能量量子化的假设:(1)黑体的腔壁是由无数个带电的谐振子组成的,这些谐振子不断地吸收和辐射电磁波,与腔内的辐射场交换能量;(2)这些谐振子所具有的能量是分立的,它的能量与其振

7、动频率成正比:0=h .式中h即为普朗克常数h=6.621810-34(JS),振子与辐射场交换的能量只能取基本单元能量子0的整数倍n=n0n=0,1,2l1414第十四张,PPT共八十八页,创作于2022年6月l由于能量取离散值,因此利用统计理论求平均值时采用求和得:l利用等比级数求和利用等比级数求和公式公式:l带入上式可得带入上式可得:l1515第十五张,PPT共八十八页,创作于2022年6月l利用公式利用公式:l得到得到(1.1.9)(1.1.9)普朗克公式普朗克公式.用波长表示即用波长表示即:l(1.1.10)(1.1.10)l1616第十六张,PPT共八十八页,创作于2022年6月l

8、1.1.3 1.1.3 各黑体辐射公式与实验的比较各黑体辐射公式与实验的比较l1717第十七张,PPT共八十八页,创作于2022年6月l1818第十八张,PPT共八十八页,创作于2022年6月 普朗克普朗克(18581947)德国人德国人 (60岁获诺贝尔奖岁获诺贝尔奖)l核心思想:核心思想:能量量子化能量量子化 (不连续不连续)!l能量不连续的概念与经典物理学是完能量不连续的概念与经典物理学是完l 全不相容的!全不相容的!lMax PlanckMax Planck荣获荣获19181918年年 Nobel Prize Nobel Prize l1919第十九张,PPT共八十八页,创作于2022

9、年6月1.2光电效应与爱因斯坦光量子理论l1.2.1光电效应实验规律l1.2.1 1.2.1 光电效应装置图光电效应装置图l当光束照射在金属表面上时,使电子从金属中脱出的现象,叫做光电效应。l截止电压与电子的动能满足关系 l(1.2.1)l2020第二十张,PPT共八十八页,创作于2022年6月l2121第二十一张,PPT共八十八页,创作于2022年6月l实验发现,对于一定的阴极材料,截止电压V0与入射光的强度无关而与光的频率成正比.当 减小时V0线性地减小,当小到某一数值 0时,V0=0,这时即使不加负电压也不会有光电子发射了。0称为光电效应的截止频率或相应的波长0=c/0称为光电效应的红限

10、。l图1.2.2 截止电压与频率的关系l2222第二十二张,PPT共八十八页,创作于2022年6月l1.2.2爱因斯坦光子假说l(1.2.2)l(1.2.3)l2323第二十三张,PPT共八十八页,创作于2022年6月l将(1.2.3)式代入(1.2.1)式,可得:l(1.2.4)如果作出eV0随变化的直线,该直线的斜率便是h。1916年密立根(RAMilikan)用这一方法求得普朗克常数的值,它与现代值十分相近。由式(1.2.4)将V0=0代入,便可得到截止频率 0=w/h,因而它只与材料性质w有关l2424第二十四张,PPT共八十八页,创作于2022年6月l1.2.3光电效应的应用光电效应

11、的研究不仅在理论上有着重要的意义,在生产、科研、国防等方面也有重要的应用价值。一类是通过光电效应对光信号进行测量,另一类是利用光电效应实现自动控制。例如在电视、有声电影和无线电传真技术中把光信号转化成电信号的光电管或光电池;在光度测量、计数测量中把光信号变为电信号并进行放大的光电倍增管等等,它们都有广泛的应用。通过光电效应进行自动控制的例子更是屡见不鲜。例如公共场所楼房大门的自动开合以及机床上自动安全装置等都可以用光电效应来实现,它们的基本原理都是光波被遮挡后便产生相应的电信号以实现所需要的控制。l2525第二十五张,PPT共八十八页,创作于2022年6月l能量为h的光子的质量和动量是多大呢?

12、爱因斯坦回答了这个问题。l可得P与波长的关系为l光压的概念:l2626第二十六张,PPT共八十八页,创作于2022年6月 爱因斯坦在讲课爱因斯坦在讲课爱因斯坦爱因斯坦(1879 1955)德国人德国人 在在普普朗朗克克获获博博士士学学位位五五十十周周年年纪纪念念会会上上普普朗朗克克向向爱爱因因斯斯坦颁发普朗克奖章坦颁发普朗克奖章l2727第二十七张,PPT共八十八页,创作于2022年6月1.3康普顿散射l图1.3.1康普顿散射实验简图l2828第二十八张,PPT共八十八页,创作于2022年6月l1.3.1 实验结果(1)不同的散射角方向上,除有原波长外,都出现了波长变化的谱线。(2)波长差=-

13、随散射角而变化,与原波长无关。如图1.3.2所示。(3)若用不同元素作散射物质,则在同一散射角下与散射物质无关;原波长谱线的强度随散射物质原子序数的增加而增加,波长的谱线强度随原子序数的增加而减小。如图1.3.3。以上现象叫做康普顿效应,康普顿因发现此效应而获得1923年诺贝尔物理奖。l2929第二十九张,PPT共八十八页,创作于2022年6月图1.3.2康普顿散射与角度的关系l图1.3.2康普顿散射与原子序数的关系l3030第三十张,PPT共八十八页,创作于2022年6月l1.3.2 理论解释l经典理论解释-康普顿视X射线为光子流,把X射线与自由电子间的作用看作是两种粒子相互碰撞发生散射的过

14、程,因此应满足能量守恒和动量守恒。式中和分别是碰撞前后光子的频率,P P和PP分别是碰撞前后光子的动量。M0为电子静质量,电子碰前的动量是零,碰后的动量是mv。l3131第三十一张,PPT共八十八页,创作于2022年6月l把(1.3.2)改成标量式得l而且l3232第三十二张,PPT共八十八页,创作于2022年6月lc称为电子的康普顿波长,具有长度的量纲0.0024nm0.0024nml3333第三十三张,PPT共八十八页,创作于2022年6月l讨论l(1)由(1.3.5)式可以看出,只与有关,与入射光的波长以及散射的物质无关。l(2)为什么散射光里总存在原波长这条谱线?l(3)波长和的两条谱

15、线强度随原子序数消长的原因是什么?l(4)为什么实验观察到波长改变的谱线有一个较宽的强度分布轮廓,只是最高峰落在理论值上?(5)为什么进行康普顿散射实验需用波长很小的X光线?l3434第三十四张,PPT共八十八页,创作于2022年6月康普顿在做康普顿散射实验康普顿在做康普顿散射实验l3535第三十五张,PPT共八十八页,创作于2022年6月 康普顿康普顿 (1892-1962)美国人美国人吴有训吴有训(18971977)物理学家、教育家物理学家、教育家中国科学院副院长中国科学院副院长清华大学物理系主任、清华大学物理系主任、理学院院长理学院院长1928年年被被叶叶企企孙孙聘聘为为清清华华大大学学

16、物物理理系系教教授授对对证证实实康康普普顿顿效效应应作作出出了了重重要要贡贡献献,在在康康普普顿顿的的一一本本著著作作中中曾曾19处处提提到到吴吴的的工工作作l3636第三十六张,PPT共八十八页,创作于2022年6月1.4德布罗意波与电子衍射l1.4.1光的波粒二象性l3737第三十七张,PPT共八十八页,创作于2022年6月l1.4.2 德布罗意假设受光的波粒两象性的启发,一直被当作粒子的实物粒子(如电子、质子),会不会也具有波动性 呢?1924年,法 国 青 年 学 者 德 布 罗 意(LVde Broglie)在他的博士论文量子理论的研究中大胆提出实物粒子具有波长也同样满足关系式l(1

17、.4.1)l(1.4.2)l3838第三十八张,PPT共八十八页,创作于2022年6月法法国国青青年年物物理理学学家家德布罗意德布罗意 (18921986)l19241924年年1111月月向向巴巴黎黎大大学学理理学院提交学院提交 博士论文博士论文l 量子理论的研究量子理论的研究l1924.11.291924.11.29德布罗意德布罗意把题为把题为“量子理论的量子理论的l 研究研究”的博士论文的博士论文提交巴黎大学,获得评提交巴黎大学,获得评l 委会的高度评价和委会的高度评价和爱因斯坦的爱因斯坦的称赞:称赞:l “揭开了自然界巨大帷幕的一角揭开了自然界巨大帷幕的一角”lL.V.de Brogl

18、ie L.V.de Broglie 荣获荣获19291929年年Nobel Nobel l Prize Prize l3939第三十九张,PPT共八十八页,创作于2022年6月l例题1.4.1求电子经100V电压加速后的德布罗意波长。l解:电子经加速后动能为Ek=100eV,Ekmoc2,用非相对论公式:将 h=6.6310-34J.S,m0=9.1110-31kg,Ek=1001.610-19J,代入得到=0.123nm由式(1.4.3)可以看出,Ek 相同时,m0质量越大波长越短。因此,对于具有相同动能的粒子,质子的波长比电子的小很多。l4040第四十张,PPT共八十八页,创作于2022年

19、6月l1.4.3 电子衍射实验l射线在晶体中的衍射服从布拉格公式上面的例题已经指出,动能为100eV的电子波长约为0.1nm,,即与X光波相近,因此,需要像X光一样,观察它们在晶体中的衍射。而晶体中原子间的距离正好是0.1nm的量级,所以可以用晶体中规则排列的原子来作为电子衍射的光栅。l图1.4.1布拉格条件l4141第四十一张,PPT共八十八页,创作于2022年6月1926年戴维逊(CJDavisson)和革末(LHGevmer)第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性。图1.4.2 戴维逊和革末实验装置示意图l4242第四十二张,PPT共八十八页,创作于2022年6月他

20、他们们将将经经过过电电场场加加速速的的电电子子束束射射到到镍镍单单晶晶上上,镍镍单单晶晶的的原原子子间间距距是是0.215nm0.215nm。实实验验中中他他们们测测量量了了散散射射电电子子强强度度随随散散射射角角变变化化的的函函数数关关系系。例例如如当当加加速速电电压压U=54VU=54V时时,探探测测器器在在散散射射角角 =50=50方方向向上上有有一一个个明明显显的的峰峰值值,如如图图1.4.2(c)1.4.2(c)所示。所示。l4343第四十三张,PPT共八十八页,创作于2022年6月=50=50时,时,=(180-50)/2=65=(180-50)/2=65,对这一组如图,对这一组如

21、图1.4.2(a)1.4.2(a)虚线平行晶面来说虚线平行晶面来说,d d=0.091nm=0.091nm,由布拉格公,由布拉格公式取式取n=1n=1则则=2=2d dsinsin=20.091nmsin65=0.165nm=20.091nmsin65=0.165nm。再根据德布罗意关系式求出电子的波长再根据德布罗意关系式求出电子的波长,这与由布拉格公式算得的结果符合得很好,这与由布拉格公式算得的结果符合得很好,从而证明了电子的波动性质从而证明了电子的波动性质。l4444第四十四张,PPT共八十八页,创作于2022年6月l图1.4.3是电子在Au多晶的衍射图样l4545第四十五张,PPT共八十

22、八页,创作于2022年6月l图1.4.4量子围栏l4646第四十六张,PPT共八十八页,创作于2022年6月1993年美国科学年美国科学家移动铁原子,家移动铁原子,铁原子距离铁原子距离0.9纳纳米米“量子围栏量子围栏”48个铁原子排列在铜表个铁原子排列在铜表面面证明电子的波动性证明电子的波动性l4747第四十七张,PPT共八十八页,创作于2022年6月1993年MFCrommie等人把蒸发到铜(111)晶面的铁原子用扫描隧道显微镜的探针排列成半径为7.13nm的园环,称为量子围栏(quantum corral),在这些铁原子形成的园环内,铜的表面态电子波受到铁原子的强散射作用,与入射电子波发生

23、干涉,形成驻波。实验观测到了在围栏内同心园状的驻波,直观地证实了电子的波动性l4848第四十八张,PPT共八十八页,创作于2022年6月例题1.4.2一个质量是0.01kg的小球,以10ms-1的速度运动时,试求出它的德布罗意波长。解 根据德布罗意关系式 =h/P小球的动量P=mv=0.0110=0.1(kgms-1)=h/p=6.6310-34JS/0.1kgms-1=6.6310-33(m)如果要想观测小球的德布罗意波,须采用大小可与比拟的孔径进行干涉、衍射实验。而在现实世界中我们无法找到这个数量级的小孔,故无法观测。由此可见,德布罗意关系在宏观物体上被它的粒子性掩盖了,它只有在微观粒子中

24、才显示出来。l4949第四十九张,PPT共八十八页,创作于2022年6月l1.4.4 对电子波粒二象性的理解l1.4.5 (a)l5050第五十张,PPT共八十八页,创作于2022年6月l1.4.5(b)l5151第五十一张,PPT共八十八页,创作于2022年6月l1.4.5(c)l5252第五十二张,PPT共八十八页,创作于2022年6月l对图1.4.5(a):l对图1.4.5(b)l对图1.4.5(c)l P12(X)=P1(x)+P2(x)+干涉项l5353第五十三张,PPT共八十八页,创作于2022年6月l图1.4.6电子双缝干涉图l5454第五十四张,PPT共八十八页,创作于2022

25、年6月 实验上我们可以做到让入射的电子流强度很弱,比如让电子一个一个地入射,再重复大量电子一次入射实验,开始屏上得到的分布似乎毫无规律,时间长了,我们仍然得到了双缝干涉图象(如图1.4.6)。可以看出,大量电子的一次性行为与单个电子的多次性行为表现出同样的波动性。l5555第五十五张,PPT共八十八页,创作于2022年6月这些结果充分表明,干涉图象的出现体现了微观粒子的共同特性,它并不是由微观粒子相互之间作用产生的,而是微观粒子其个性的集体表现。总之,粒子的波粒二象性,是指微观粒子从量子观点看,它即是粒子,又是波,所谓粒子性是它具有质量、能量、动量等粒子属性。所谓波动性是指其具有频率、波长,在

26、一定条件下,可观察出干涉和衍射l5656第五十六张,PPT共八十八页,创作于2022年6月少女?少女?老妇?老妇?两种图像不会两种图像不会同时出现在你同时出现在你的视觉中的视觉中l5757第五十七张,PPT共八十八页,创作于2022年6月1.5波函数及玻恩解释l不论光子、电子还是其它粒子,都具有波粒二象性。为了描绘这种二象性,1927年玻恩(M.Born)提出,粒子的行为是由几率波支配的,波的强度代表粒子的出现几率。也就是说,我们可以选用波函数来对微观粒子的运动状态作数学上的描述,它的形式必须使得所描述的物质粒子运动能够显示出它的波动特性。l5858第五十八张,PPT共八十八页,创作于2022

27、年6月l1.5.1 自由粒子的波函数 对于自由粒子,例如阴极射线,反应堆中子束和加速器质子束,它们的动量不变,德布罗意波长和动量由关系式联系着,动量不变,波长不变,相当于单色波。对于一维自由空间远离光源的单色波,它的电场强度可以写为式中,为电磁波的频率;为波长。l(1.5.1)l(1.5.2)l(1.5.3)l5959第五十九张,PPT共八十八页,创作于2022年6月与此类似对一维自由粒子的德布罗意波可相应地写l式中h/p为与动量P相联系的德布罗意物质波长;为与自由粒子能量(Eh )相联系的德布罗意物质波的频率。l6060第六十张,PPT共八十八页,创作于2022年6月推广到三维空间,写成更一

28、般的复数形式式中k k(k k2)为波矢量;2为角频率。由德布罗意关系式:l上面的波函数还可以写成l(1.5.3)l(1.5.4)tE EtK rK rl6161第六十一张,PPT共八十八页,创作于2022年6月l6262第六十二张,PPT共八十八页,创作于2022年6月1.5.2 玻恩对波函数的解释首先考察光的双缝干涉图样。由波动图像,屏幕上某点的强度I由下式给出:l由光子图像,屏幕上一点的强度为式中h是一个光子的能量;N为打在屏幕上该点的光子通量。l6363第六十三张,PPT共八十八页,创作于2022年6月虽然单个光子到达屏幕什么地方无法预测,但亮带光子到达的几率大,暗带光子到达的几率小,

29、在屏幕上一点的光子通量N,便是该点附近发现光子几率的一个量度。因为l6464第六十四张,PPT共八十八页,创作于2022年6月上式说明,在某处发现一个光子的几率与光波的电场强度的平方成正比。这就是爱因斯坦早在1907年对光辐射的量子统计解释。与爱因斯坦把 解释为“光子密度的几率量度”相似,玻恩把 解释为给定时间,在一定空间间隔内发现一个粒子的几率。玻恩指出“对应空间的一个状态,就有一个由伴随这状态的德布罗意波确定的几率。”玻恩由此获得了1954年诺贝尔物理奖。l6565第六十五张,PPT共八十八页,创作于2022年6月经典的波振幅如电场强度E都是可以测量的,而(x,t)却一般不能被测量。在量子

30、理论中,测量与描述不是一回事。如果硬要说(x,t)的物理意义,只能说t时刻,测量粒子处在xx+dx空间中的几率正比 dx。由此可见,只有 才有测量上的意义,它的含义是几率。而对于几率分布来说,重要的是相对几率分布,显而易见,(x,t)与c(x,t)(c为一常数)所描述的相对几率分布是完全相同的,而经典波不同,若振幅增加了一倍,则相应的波动能量将为原来的4倍,完全代表了不同的波动状态。l6666第六十六张,PPT共八十八页,创作于2022年6月l1.5.3 波函数具备的标准条件(1)由于 描述的是粒子在x处dx范围内的几率,而粒子在任何地方出现的几率是确定的,因此在任何地方的波函数(x)必须是单

31、值函数单值函数。(2)由于几率不能在某处发生突变,所以波函数必须处处连连续续。(3)由于在某处发现粒子的几率不可能无限大,所以(x)必须是有限有限的。波函数的单值,连续和有限通常被称之为波函数必须具备的标准条件。这些标准条件在应用量子力学解实际问题时(第三章)非常有用。l6767第六十七张,PPT共八十八页,创作于2022年6月l粒子在空间各点出现的几率总和等于1l6868第六十八张,PPT共八十八页,创作于2022年6月1.6海森伯不确定关系l由于微观粒子具有波动性,因而粒子状态不能用位矢r r(t)和动量P P(t)来描述。它的空间位置需要用概率波来描述,而概率波只能给出粒子在各处出现的概

32、率,所以在任一时刻粒子不具有确定的位置,与此相联系,粒子在各时刻也不具有确定的动量。l6969第六十九张,PPT共八十八页,创作于2022年6月l这也可以说,由于波粒二象性,在任意时刻粒子的位置和动量都有一个不确定量。量子力学理论证明,在某一方向,例如x方向上,粒子的位置不确定量x和在该方向上的动量的不确定量Px有一个简单的关系,这一关系叫做不确定关系(也曾叫做测不准关系)l7070第七十张,PPT共八十八页,创作于2022年6月l图1.6.1电子单缝衍射说明l7171第七十一张,PPT共八十八页,创作于2022年6月l考虑到衍射条纹的次级极大:l根据德布罗意公式l单缝衍射公式,第一级暗纹中心

33、的角位置1由下式决定l所以有l(1.6.1)l7272第七十二张,PPT共八十八页,创作于2022年6月l对于其他的分量,类似地有l更一般的理论给出l将此式代入上面(1.6.1)的表示式得l(1.6.2)l7373第七十三张,PPT共八十八页,创作于2022年6月粒子的能量和时间还存在着不确定关系。上面三个公式可写成l引入常量l(1.6.3)l(1.6.4)l(1.6.5)l(1.6.6)l以上各式称为不确定关系l7474第七十四张,PPT共八十八页,创作于2022年6月海森伯海森伯(1901-1976)德国人德国人lW.HeisenbergW.Heisenberg荣获荣获19321932年年

34、 Nobel Prize Nobel Prize Xl7575第七十五张,PPT共八十八页,创作于2022年6月不确定关系是海森伯于1927年给出的,因此常被称为海森伯不确定关系或不确定原理。它的根源是波粒二象性。(1)由坐标和动量的不确定关系可以说明粒子的位置坐标不确定量越小,则同方向上的动量不确定量越大;同样,某方向上动量不确定量越小,则此方向上粒子位置的不确定量越大。总之,这个不确定关系告诉我们,在表明或测量粒子的位置和动量时,它们的精度存在着一个终极的不可逾越的限制.l讨论:l7676第七十六张,PPT共八十八页,创作于2022年6月(2)不确定关系不是由测量仪器或测量技术造成的,而是

35、微观粒子本身的属性所决定的。在双缝干涉实验中,虽然电子在某时刻落在何处不能确定,但电子落入给定区域的概率是完全确定的。轨道的概念在经典力学中是以坐标和动量有同时确定值为前提的,因而轨道的概念不适用于微观粒子。l7777第七十七张,PPT共八十八页,创作于2022年6月海森伯不确定关系 对于受激原子体系有非常重要的意义。处于激发态的原子是不稳定的,它或迟或早地会跃迁到低能级直至基态。平均地说,受激原子只能存在一段有限时间,这段时间叫做平均寿命。因此,根据不确定关系,系统的能量将有一个自然的最小不确定量,即分布宽度E,满足关系(4)这个关系式有很重要的实际用途。在理论上通过计算不稳定状态的平均寿命

36、,来估计能量的变化范围。在实验上可根据测得的能谱宽度,来估计不稳定状态的平均寿命,或根据测得的粒子的寿命,来估算粒子的能量宽度。l7878第七十八张,PPT共八十八页,创作于2022年6月l例1.6.1在原子内部,可以算出电子的速度应在106m.s-1范围内,否则电子就会从原子中逃出,求电子的位置不确定量。l解:由于由不确定关系可得l由此可以看到,位置的不确定性同整个原子一样大了。电子在原子中的“轨道”便弥散了,l因而必须抛弃轨道概念而代之说明电子在空间的概率分布的电子云图象。ll7979第七十九张,PPT共八十八页,创作于2022年6月l例例题题1.6.21.6.2一一质质量量为为5 5 1

37、010-3-3 kgkg的的小小球球,以以速速度度2ms-2ms-1 1运运动动,其其动动量量测测量可精确到量可精确到11,试试确定确定这这个小球位置的最小不确定量个小球位置的最小不确定量.l解解:因因 为为PP P P 1010-3-3,PP 1010-3-3P P 1010-3-3mVmV,由由 不不 确确 定定 关关 系系l 有有l 代入代入题题中己知条件得到中己知条件得到l8080第八十张,PPT共八十八页,创作于2022年6月l对对一一个个10103030米米数数量量级级位位置置不不确确定定量量来来说说,目目前前无无法法被被任任何何精精确确的的实实验验所所察察觉觉。因因此此对对小小球

38、球这这种种宏宏观观物物体体,它它的的波波动动性性不不会会对对它它的的“经经典典式式”运运动动带带来来任任何何实实际际的的影影响响。在在不不确确定定关关系系中中,一一个个关关键键的的量量是是普普朗朗克克常常数数h h,它它是是一一个个小小量量,因因而而,不不确确定定关关系系在在宏宏观观世世界界里里不不能能直直接接体体现现出出来来,但但在在微微观世界里,它的效应却非常明显。观世界里,它的效应却非常明显。l8181第八十一张,PPT共八十八页,创作于2022年6月本章主要内容小结:l1黑体辐射与普朗克的量子化假设l(1)维恩与瑞利金斯经典理论公式l(2)普朗克公式与能量子假设:E=h;l l8282

39、第八十二张,PPT共八十八页,创作于2022年6月l2光电效应与爱因斯坦光量子论l(1)爱因斯坦光子假说:E=h:l(2)光电效应的爱因斯坦公式:l(3)光电效应的应用3 康普顿散射l康普顿散射的实验结果三条:l理论解释:用光的粒子性来解释:l8383第八十三张,PPT共八十八页,创作于2022年6月l4 德布罗意波与电子衍射l(1)由光的波粒两象性到德布罗意假设:l(2)电子衍射试验的证明:戴维孙与革末衍射试验。l(3)对电子波粒二象性的理解l8484第八十四张,PPT共八十八页,创作于2022年6月l5 波函数与波恩解释l(1)自由粒子的平面波方程(波函数)l(2)波恩对波函数的解释l波恩把 解释为在一定空间内发现一个粒子的几率l(3)波函数具备的标准条件:单值,连续,有限。满足归一化。l8585第八十五张,PPT共八十八页,创作于2022年6月l6 海森伯不确定关系l对海森伯不确定关系的讨论及其物理意义l8686第八十六张,PPT共八十八页,创作于2022年6月l相对论公式:l以上两式两边分别平方再联立,得到动量和能量之间的关系:l8787第八十七张,PPT共八十八页,创作于2022年6月感感谢谢大大家家观观看看第八十八张,PPT共八十八页,创作于2022年6月

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 资格考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁