《基于单片机的粮仓温度控制系统毕业论文.doc》由会员分享,可在线阅读,更多相关《基于单片机的粮仓温度控制系统毕业论文.doc(82页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 基于单片机的粮仓温度控制系统毕业论文目录一绪论11.1背景11.2设计的目的和意义11.3相关领域国外技术和发展趋势2二系统方案设计42.1方案设计43.2方案论证5三温度传感器63.1温度传感器的选型63.1.1传感器的选择原则63.1.2温度传感器的选择63.2 温度上、下限值的设定原理7四系统硬件设计84.1系统工作原理综述84.2 DS1820与单片机接口电路94.2.1单片机89C51为本系统的核心104.2.2中央处理器AT89C51简介134.3 DS18B20简介与测温电路设计164.3.1 DS18B20 的性能特点174.3.2 DS18B20的外形和部结构174.3.3
2、高速暂存存储器214.3.4 DS18B20单总线(1一Wire)的基本原理224.4液晶显示电路294.4.1 LCD1602主要技术参数294.4.2 LCD1602的引脚说明304.4.3控制指令说明304.5按键电路314.6报警电路33五软件功能与框图345.1主程序345.2 读出温度子程序345.3 温度转换命令子程序345.4 计算温度子程序345.5显示数据刷新程序子程序345.6按键处理子程序34六单片机的抗干扰问题406.1干扰因素406.2硬件抗干扰措施406.2.1合理选择元器件406.2.2电源干扰的抑制406.2.3电场、磁场干扰的抑制406.2.4接地技术406
3、.2.5通道技术416.2.6布线抗干扰设计426.3软件抗干扰措施436.3.1数字滤波器436.3.2软件冗余436.3.3设置软件陷阱436.3.4重要指令冗余436.3.5“看门狗”技术43结论45参考资料46致谢47附录1 仿真原理图48附录2 程序代码49附录3 英文文献6780 / 82 一 绪论1.1背景“国以民为本,民以食为天”,“兵马未动,粮草先行”,这些都充分说明粮食对国家的重要性。从理论上讲国家掌握的粮食越多越好,但从现代经济学的角度看,国家只要能控制住一定数量的可以灵活支配、质量良好的粮食,既可达到“备战备荒”、宏观调控的目的,又可节省资金用于发展经济。一般来说:粮食
4、存放在粮仓中,大型的粮仓可存放数以万计的粮食。而且这些粮食存放的时间有长有短。为了保证存放在粮仓中的粮食不致腐烂变质,就必须使粮仓的温度保持在一定的围以。为了达到以上的要求,必不可少的就是既稳定又精确的粮情智能测控管理系统。粮情智能测控系统是通过计算机检测粮食储备库中粮食的基本温度情况,并结合其他粮情信息(如入仓时间、品种、仓型、天气状况等)进行综合分析。利用微机技术对粮仓进行监控,用户可方便地构造自己需要的数据采集系统,在任何时候把粮仓现场的信息实时地传到控制室,管理人员不需要深入现场,就可查看历史数据,优化现场作业,提高生产效率,增强了国家粮食储备安全水平,以获得实时粮仓管理,实现自动化、
5、智能化。本文只阐述粮情温度检测,以下所说粮情仅指温度。但涉与到的一些方法也适合其他粮情检测情况。在综合研究国粮库管理现状和发展的前提下,吸收了国多种粮库粮情温度测控系统的成功经验后,我们设计了自己的粮情温度智能测控系统。该系统具有可靠性和高性价比,而且操作维修简便,具有检测、数显、分析等诸多功能。1.2设计的目的和意义科学储粮是粮食生产的一个重要环节,若管理不当,粮食发霉或生虫会造成极大浪费。粮库管理中最重要的问题是监测粮堆中的温度变化。粮库一般由几十个甚至上百个由水泥或钢板构成的圆型仓组成,仓高20一30m。现在,我国在粮仓建设上己实现规化,但是监测手段一直未能实现同步现代化。我国许多储备粮
6、库每年都因测控设备的不完善而导致部分粮食霉变,许多大型储备粮库的测控设备仍需高价进口,因此国家准备在未来的几年对全国所有的粮库进行翻新和改造工作,要求规粮库管理,实现粮库管理现代化。影响储粮安全的最主要因素是粮堆的温度,这就要求能有一种有效的、低成本的仪表来实现监测控制功能,使得管理人员能够方便有效地进行监控操作。如果用单片机作为前沿机对现场进行数据采集,通过对采集的数据进行分析(温度设定,实时温度显示,报警电路)然后通过单片机串行口控制电机启停进行温度控制。利用单片机技术对粮仓进行检控,用户可以方便地够造自己所需要的数据采集系统,在任何时候把粮仓现场的信息实时地传到控制室,管理人员不进入现场
7、就可以按照所需的温度要求对粮仓的温度情况进行控制,提高了生产效率,增强了粮仓存储安全,获得了粮仓的实时管理,实现自动化,智能化。微机测量是微机设计的第一步,是微机测量技术的现场部分,即测量粮仓中的温度,并使用单片机对测量的数据进行处理并对粮仓的温度进行控制。1.3相关领域国外技术和发展趋势粮情检测技术是科学保粮的关键技术之一。随着电子技术、计算机应用技术的进步和发展,计算机的应用围日益扩大,计算机被应用于粮情监控系统。初期,以铜电阻,热敏电阻作为传感器件,通过检测电阻的变化来反映粮食温度的变化,为粮食保管提供参考依据。但此工作靠人工测量,效率低,准确性差。在粮食部门各级领导的关怀和粮食行业科技
8、主管部门的大力支持下,在粮食行业、外广大科技工作者近30年的共同努力下,粮情检测技术不断完善、提高、并日趋成熟,逐步形成了样式繁多的粮情检测系统,为安全、科学储粮起到了积极作用。目前国己有数十家企业生产粮情监控系统产品,品种繁多,系统结构各异,但其基本功能无外乎粮仓外温湿度检测、粮食部温度检测与分析、通风机械的控制等几项,鉴于粮食储藏的特殊性,系统功能的重点放在了储粮部温度的检测和分析上。粮情监控系统可以根据采用的温度传感器的不同进行如下分类:(1)热敏电阻以温度变化导致阻值的变化为工作原理的热敏电阻,因其具有成本低、体积小、简单、可靠、响应速度快、容易使用等特点,成为国粮情检测系统中采用最多
9、的温度传感器。热敏电阻的电阻温度系数较高,室温通常也较高,因此其自身发热较小,信号调节较为简单。但热敏电阻也存在缺点,如:是互换性差、温度与输出阻值之间呈非线性关系。(2)数字式温度传感器数字式温度传感器的种类也不少,但用于粮情测控系统的温度传感器主要是Dallas的DS18x20系列温度传感器,其温度检测围为55125,检测精度为0.5。DS18x20采用1WireTM接口,封装形式有PR35和SSOP16两种,粮情测控系统中采用的是PR35封装。DS18x20采用9个位表示测温点的温度值,每个DS18x20部都设置有一个单一的序列号,因此可以使多个DS18x20共存于同一根数据传输线上。D
10、S18x20部分为4个部分:1、64位序列号;2、保存临时数据的8字节片RAM;3、保存永久数据的2字节EEPROM;4、温度传感器。采用数字式温度传感器粮情测控系统的结构与采用热敏电阻粮情测控系统的结构大致相同,只是用测控单元替代了智能分机、扩充接线器替代了温度分线器。测控单元与智能分机的区别在于没有用于将温度信号数字化的A/D转换电路,取而代之的是1WireTM总线与上层通信总线之间的通信转换电路,如果系统选用了数字式湿度传感器则测控单元将完全由数字电路组成,而智能分机是由数字电路和模拟电路两部分构成的,这将使测控单元的电路设计更为容易。采用DS18x20温度传感器的粮情测控系统的测温电缆
11、与热敏电阻测温电缆大不相同,该测温电缆最多只需3根导线即可连接多个DS18x20温度传感器。最为简洁的结构是利用DS18x20可以通过数据线供电的特点,在测温电缆中只放置两根平行的细钢丝绳即可连接多个DS18x20温度传感器,这样不仅使测温电缆的制造简便、成本下降,而且提高了测温电缆的抗拉强度、便于温度传感器的更换。正是这些特点使得采用DS18x20温度传感器的粮情测控系统更适用于高大粮仓(诸如浅圆仓、立筒仓)的应用环境,可以解决高大粮仓在不需重新安装测温电缆的情况下更换测温电缆部的温度传感器以与改变温度传感器相对位置。由于这种温度传感器的价格比热敏电阻高出许多,所以DS18x20温度传感器粮
12、情测控系统在房式仓中应用时不如热敏电阻粮情测控系统更具有性能价格比的优势。(3)光纤传感器光纤温度传感器是近几年发展的新技术,也是工业中用的最多的光纤传感器之一。目前研究的光纤温度传感器主要有辐射式温度传感器、半导体吸收式温度传感器、光纤热色传感器等。光纤温度传感器的精度更高,但成本较贵。二系统方案设计2.1方案设计方案一:该案由单片机、模拟温度传感器AD590、运算放大器、AD转换器、LCD显示电路、集成功率放大器、报警器组成。该方案采用模拟温度传感器AD590作为测温元件,传感器测量的温度变化转换成电流的变化,再通过电路转换成电压的变化,使用运算放大器交给信号进行适当的放大,最后通过模数转
13、换器将模拟模拟信号转换成数据信号,传给单片机,单片机将温度值进行处理之后用LCD显示,当温度值超过设定值时开始报警。如图2-1所示:模拟温度 传感器运算放大器AD转换键盘 单片机LCD 显示模块集成功放报警器图2-1方案一温度测量系统方案框图方案二:该方案使用了AT89C51单片机作为控制核心,以智能温度传感器DS1820为温度测量元件,采用多个温度传感器对多点温度进行检测,通过键盘模块对温度上、下限设置,超过其温度值就报警。显示电路采用LCD1602模块,使用单片机直接驱动蜂鸣器构成报警电路。如图1-2所示:温度传感器温度传感器温度传感器温度传感器键盘单 片机LCD液晶显示电路报警电 路图2
14、-2方案二温度测量系统方案框图3.2方案论证方案一采用模拟温度传感器,转换结果需要经过运算放大器传给处理器。它控制虽然简单,但电路复杂,不容易实现对多点温度测量和监控。由于采用了多个分立元件和模数转换器,不容易出现误差,测量结果不是很准确,因此本方案并不可取。方案二采用智能温度传感器DS1820,它直接输入数字量,精度高,电路简单,只需要模拟DS1820的读写时序,根据DS1820的协议读取转换的温度。此方案硬件电路简单,但程序设计复杂一些,但是在课题外对DS1820、字符型液晶显示有所了解,而且曾经在网上看过此类程序设计,并且我们已经使用开发工具KEIL 用汇编语言对系统进行了程序设计,用仿
15、真软件PROTEUS对系统进行了仿真,达到了预期的效果。由此可见,此方案的可行性,表达了技术的先进性,经济上也没有任何问题。综上所述,本课题应当采用方案二对系统进行设计。三温度传感器3.1温度传感器的选型3.1.1传感器的选择原则要进行一个具体的测量工作,首先要考虑用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可以选用,哪一种原理的传感器更为适合,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器体积的要求;测量方式是接触式的还是非接触式的;信号的引出方法;传感器的来源,国产还是进口,价格是否能承受。
16、在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。传感器的具体指标有灵敏度,频率响应特性,线性围,稳定性,精度等。这些参数并不是要求越高越好,因为要求越高不仅会带来成本的提高,也会带来信号处理的难度,噪音等问题。在满足检测系统要求的前提下我们一般选择价格便宜和简单的传感器。3.1.2温度传感器的选择美国DALLAS半导体公司的数字化温度传感器DS1820 是世界上第一片支持一线总线接口的温度传感器,而新的“一线器件”DS18B20体积更小、适用电压更宽、更经济。单线数字温度传感器,可以直接将被测温度转化成串行数字信号,以供单片机处理,克服了传统的模拟式温度传感器不
17、仅需要设计信号调理电路,还要经过复杂的校准和标定过程,测量精度难以保证的缺点,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。另外,DS18B20一线总线数字化温度传感器同DS1820 一样,DS18B20 也支持一线总线接口采用单根信号线,既可以传输时钟,又能传输数据,而且数据传输是双向的。与其他数字温度传感器相比具有线路简单硬件开销少,成本低、便于扩展等优点。DS18B20的测量温度围为-55C+125C,在-10+85C 围,精度为0.5C。DS1822 的精度较差为 2C 。现场温度直接以一线总线的数字方式传输,与前一代产品不
18、同,新的产品支持3V5.5V 的电压围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。DS18B20 可以程序设定912 位的分辨率,精度为0.5C。分辨率设定与用户设定的报警温度存储在EEPROM 中,掉电后依然保存。DS18B20 的性能是新一代产品中最好的!性能价格比也非常出色!DS1822 与DS18B20 软件兼容,是DS18B20 的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为2C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继一线总线的早期产品后,DS18B20 开辟了温度传感器技术的新概念。DS18B20 和DS1822 使电
19、压、特性与封装有更多的选择,让我们可以构建适合自己的经济的测温系统。3.2 温度上、下限值的设定原理利用制冷机产生的冷量对自然空气进行冷却降温、除湿,再通过风机与粮仓的通风管道使冷却后的空气穿过粮堆,使粮食温度降到15C 以下进行低温储藏的一项科学、先进的粮食储藏技术。运用该技术可使粮食的低温储藏不受气候条件的影响,即使在炎热的夏季或雨季都可实现。目前在发达国家特别是西欧国家已获得了广泛的应用,对于保证粮食品质,安全储藏粮食起着重要的作用。利用机械制冷方法将粮温降到515C 进行低温储藏是一种科学、先进的储粮方式,具有以下特点:(1)与常温储藏相比,低温储藏使粮食的呼吸活动大大减弱,可延缓粮食
20、的化,保持粮食的新鲜度并降低储粮自然减量损失。粮食在10C时储藏,由于呼吸产生的干物质损失要比在20C 和30C 时储藏少4 倍和15 倍。(2)当粮温达到13C 时,害虫的繁殖和活动就基本停止,粮温降至10C 时完全停止。因此低温储藏可以避免粮食遭受虫害而造成的损失。在一些西欧国家,低温储粮已不需要进行化学药剂熏蒸杀虫,从而改善了粮库工人的工作环境,避免残留药剂对人们身体健康的危害。(3)因为霉菌等微生物喜温,所以低温储粮使霉菌的活动基本停止,可有效地防止粮食发生霉变。(4)对粮食进行机械制冷降温,使得粮食在高于安全水分时储藏成为可能,因此可以提高储粮和加工单位的效益。对于稻谷,最适合的碾磨
21、水分是15 %左右,但常温下稻谷储藏的安全水分是13. 514 % ,加工前需进行人工增湿, 使稻谷易于产生爆腰,碾磨的整米率下降。若采用人工冷却降温方法, 稻谷可在15 %水分下安全储藏(见表3-1) ,从而提高稻谷碾磨的整米率,同时减少储粮水分减量损失。在西班牙的一个碾米厂,采用机械制冷低温储藏稻谷后提高整米率20 %。对于10000 吨的粮食储量,在15 %的水分下储藏,可减少储粮单位水分减量损失116173 吨。表3-1 粮温为10C 时粮食水分与安全储藏期的关系粮食水分( %)粮食安全储藏期(月)12. 0 - 15. 58 - 1215. 5 - 17. 56 - 1017. 5
22、- 18. 54 - 618. 5 - 20. 01 - 420. 0 - 23. 00. 5 - 223. 0 - 25. 00. 25 - 0. 5四 系统硬件设计4.1系统工作原理综述基于单片机的单总线多点温度监测系统以AT89C51为中心期间,以KEIL为系统程序开发平台,以汇编语言进行程序设计,以PROTEUS作为仿真软件设计而成的。系统主要由温度传感器、液晶显示电路、键盘、报警电路组成,电路图如附录XXXX一所示。DS1820是智能温度传感器,它的输入、输出采用数字量,通过单总线,接收主机发送的命令,根据DS1820部的协议进行相应的处理,将转换的温度数值以串口形式发给主机,主机按
23、照通讯协议用一个IO口模拟DS1820时序,发送命令(初始化命令、ROM命令、功能命令)给DS1820,并读取温度值,在部进行相应的数据处理,用字符型液晶显示模块显示各点的温度值。在系统启动之时,可以通过按键设置各点温度的上限值和下限值,当某点温度超过设置值时,报警器开始报警,从而实现了对各点温度实时监控。每个DS1820有自己的序列号,因此本系统可以在一根总线上接了4个DS1820,通过CRC校验,对各个DS1820的ROM进行寻址,地址符合的DS1820才作出响应,接收足迹命令,向主机发送转换的温度。采用这种DS1820寻址技术,使系统硬件电路更加简单。DS1820虽然有测温简单的特点,单
24、在实际应用中应注意一下几点:(1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820 与微处理器间采用串行数据传送,因此,在对DS1820 进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C 等高级语言进行系统程序设计时,对DS1820 操作部分最好采用汇编语言实现。(2) 在DS1820 的有关资料中均未提与单总线上所挂DS1820 数量问题,容易使人误认为可以挂任意多个DS1820,在实际应用中并非如此。当单总线上所挂DS1820 超过8 个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。(3) 连接DS1820 的总
25、线电缆是有长度限制的。试验中,当采用普通信号电缆传输长度超过50m 时,读取的测温数据将发生错误。当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正常通讯距离进一步加长。这种情况主要是由总线分布电容使信号波形产生畸变造成的。因此,在用DS1820 进行长距离测温系统设计时要充分考虑总线分布电容和阻抗匹配问题。(4) 在DS1820 测温程序设计中,向DS1820 发出温度转换命令后,程序总要等待DS1820 的返回信号,一旦某个DS1820 接触不好或断线,当程序读该DS1820 时,将没有返回信号,程序进入死循环。这一点在进行DS18
26、20 硬件连接和软件设计时也要给予一定的重视。4.2 DS1820与单片机接口电路DS1820可以采用两种方式供电,一种是采用电源供电方式,此时DS1820的1管脚接地,2脚作为信号线接单片机的I/O口,电源与数字输入管脚间需接一个4.7K的电阻,3管脚接电源,如图4-1所示。另一种是寄生电源方式,如图4-2所示。单片机端口接单片机总线,为保证在有效的DS1820 时钟周期提供足够的电流,可用一个MOSFET管来完成对总线的上拉。当DS18B20处于些存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10s。采用寄生电源供电方式时VDD和GND端均接地。由于单线制只有一
27、根线,因此发送端接口必须是三态的。单片机VCCDQGNDVcc4.7K图4-1 DS18B20采用电源供电方式的电路图单片机VccVcc DS18B20DS18B20DS18B204.7 K 图4-2 DS18B20采用寄生电源的电路图4.2.1单片机89C51为本系统的核心单片机是把微机主要部分都集成在一个芯片上的单芯片微型计算机。由于它的结构与指令功能都是按照工业控制要求设计的,故又叫单片控制器(Single Chip Microcontroller)。通常,一个微计算机由微型计算机与外部设备组成,而微型计算机则包括微处理器(CPU),存储器(存放指令或数据的ROM, RAM等),输出/输
28、入口(I/O口)与其它功能部件如定时/计数器,中断系统等。它们通过地址总线(AB),数据总线(DB)和控制总线(CB)连接起来。通过输入/输出口线与外部设备与外围芯片相连。CPU中配置有指令系统。计算机系统中配有驻机监控程序,系统操作软件与用户应用软件。由于单片机是把微型计算机主要集成在一块芯片上,故可以把单片机看成一个不带外部设备的微计算机。相当于一个没有显示器,没有键盘,不带监控程序的单板机。其结构如图4-3所示:时钟复位CPUROMRAM定时计数器中断系统I/O口外部设备图4-3微型计算机结构图单片该系统所用单片机为MCS-51系列单片机,其管脚分类与引脚功能分类如图4-4所示:控制口线
29、:/PESN(片外取指控制)、ALE(地址锁存控制)、/EA(片外存储器选择)、RESET(复位控制)。电源与时钟:Vcc,Vss;XTAL1、XTAL2. 图4-4 MCS-51系列单片机引脚图其应用特性:I/ O口线不能都用作用户I/O口线。除8051/8751真正可完全为用户使用的1/O 口线只有P1口,以与部分作为第一功能使用时的P3口。I/ O口的驱动能力,PO 口可驱动8个TTL门电路,P1,P2,P3 则只能驱动4个TTL门。P3 口是双重功能口,其双重功能由管脚图可见。三总线结构 :单片机和管脚除了电源复位,时钟接入,用户1/O口外,其余管脚都是为了实现系统扩展而设置的。这些管
30、脚构成了三总线形式,即:(1) 地址总线 (A B )。地址总线宽度为16位,因此其外部存储器直接寻址围为64K字节。16位地址总线由PO口经地址锁存器提供低8位地址 (A O- A 7): P 2口直接提供高8位地址(A8-A15)。(2) 数据总线 (DB )。数据总线宽度为8位,由PO口提供。(3) 控制总线 ( CB )。由 P3 口的第二功能状态和4根独立控制线 RESET, /E A,ALE, /PSEN组成。AT89C51是 ATMEL公司的8位Flash单片机系列,这个系列单片机的最大特点是在片含有Flash存储器,因此,在应用中有广泛的前景和用途,特别是在便携式,省电与特殊信
31、息保存的仪器和系统中显得更为有用。89 系列单片机若干优点 :(1) 部含 Flash 存储器,在系统的开发过程中可以十分容易进行程序修改,大大缩短了系统的开发周期,同时,在系统工作过程中能有效保存一些数据信息,即使外界电源损坏也不会影响到信息的保存.(2) 与80C51 插座兼容,用相同引脚的89系列单片机可直接取代 80C51 的单片机。(3) 静态时钟方式,8 9系列单片机采用静态的时钟方式所以可以节省电能,这对于降低便携式产品的功耗十分有用。(4)错误编程亦无废品产生,一般的OTP产品,一旦编程编误即成废品,而 8 9系列的单片机部采用了Flash memory,所以错误编程之后仍可重
32、新编程,直到正确为止,故不存在废品。(5) 可进行反复系统试验,用89系列单片机设计的系统,可以反复进行系统试验,每次试验可以编入不同的程序,这样保证用户的系统设计达到最优,而且,随用户的需要和发展,还可以修改,使系统不断能追随用户的最新要求。89C51 在 89系列单片机中属标准型单片机,它和MCS-51系列单片机兼容。部有4K可重复编程的Flash memory,可进行1000次擦写操作,全静态工作为0-33MHZ,有三级程序存储器加密锁定,有部含128-256字节的RAM, 32条可编程的110端口,有2个16位定时器/计数器,有通用串行接口,有低电压空闲与电源下降方式。中断有6级。4.
33、2.2中央处理器AT89C51简介(1)AT89C51具有以下几个特点:AT89C51与MCS-51系列单片机在指令系统和引脚上完全兼容;片有4K字节在线可重复编程快擦写程序存储器;全静态工作,工作围:OHz24MHz;三级程序存储器加密;128 X 8 位部RAM;32 位双向输入输出线;两个16 位定时器/计数器;五个中断源,两级中断优先级;一个全双工的异步串行口;间歇和掉电工作方式。(2)AT89C51的串行接口1)数据缓冲寄存器SBUF数据缓冲寄存器SBUF中直接寻址的专用寄存器。在物理上它对应两个寄存器,一个发送寄存器和一个接收寄存器.CPU写SBUF就是修改发送寄存器;读SBUF就
34、是读取接收寄存器。接收器是双缓冲的,以防出现两帧数据重叠。发送时不用双缓冲,因为发送时CPU是主动的,不会产生写重叠的问题。2)串行口控制寄存器SCON串行口控制寄存器SCON格式如表4-1:D7D6D5D4D3D2D1D0SM0SM1SM2RENTB8RB8T1R1 表4-1 串行口控制寄存器SCON格式AT89C51是一种低损耗、高性能、CMOS八位微处理器,片有4K字节的在线可重复编程快擦写程序存储器,能重复写入/擦除100。次,数据保存时间为十年。它与MCS-51系列单片机在引脚和指令系统上完全兼容,不仅可以完全代替MCS-51系列单片机,而且能使系统具备许多MCS-51系列产品没有的
35、功能。AT89C5 1可构成真正的单片机最小应用系统,缩小系统体积,增加系统的可靠性,降低了系统成本。只要程序长度小于4K,四个1/O口全部提供给用户。可用5V电压编程,而且擦写时间仅需10 ms,仅为8751/87C51的擦除时间的百分之一,与8751/87C51的12V电压擦写相比,不易损坏器件,没有两种电源的要求,改写时不必拔下芯片,适合许多嵌入式控制领域。工作电压围宽(2.7V-6V),全静态工作,工作频率宽,在OHz-24Hz,比8751/87C51等51系列的6MHz-12MHz更具灵活性,系统能快能慢。AT89C51提供三级程序存储器加密,提供了方便灵活而可靠的硬加密手段,能完全
36、保证程序或系统不被仿制。(3)时钟设置与CPU时序 振荡器51系列单片机片含有一个高增益的反向放大器,通过XTAL1、XTAL2外接反馈元件的晶体便成为自激振荡器,接法如图4-5,晶体成感性,与C1、C2构成并联震荡电路。振荡器的振荡频率主要取决于晶体;电容的值则是微调作用,通常取30pF左右。单 片 机 30pF30pFC1C2XTAL1XTAL2 图4-5 外接晶体接法.CPU时序振荡器输出的震荡脉冲经2分频成为部时钟信号,用作单片机部各功能不见按时序协调工作的控制信号。其周期也成为时钟周期(或则状态周期)。6个时钟周期构成一个机器周期。指令周期以机器周期为单位。若采用6MHz晶振,则单指
37、令周期和双指令周期执行时间分别为2s和4s,ALE引脚输出的脉冲周期为1s。(4)复位方式为确保系统中电路稳定可靠的运行,复位电路是必不可少的一部分。复位电路的第一功能是上电复位。一般微机电路工作需要供电电源为5V士5%,即4.75-5.25V。由于微机电路是时序数字电路,它需要稳定的时钟信号,因此在电源上电时,只有当VCC超过4.75V以与晶休振荡器稳定工作时,复位信号撤除,微机电路开始工作。微机电路在运行中受到干扰后,容易出现CPU程序“跑飞”盲目运行甚至出现死机现象。此时复位信号有效,使微机系统重新恢复正常运行。这种监视CPU运行的电路称为Watchdog电路。51系列单片机的复位(RS
38、T)引脚只要出现10ms以上的高电平,单片机就会实现复位,复位后程序的入口地址为0000H,单片机工作在寄存器0组,堆栈在片RAM的08H单元建立,P0P3口输出全为1,中断系统禁止工作。与其它计算机一样,51系列单片机系统常常有上电复位和操作复位两种方法。所谓上电复位,是指计算机上电瞬间,要在RST引脚上出现宽度大于10ms三万正脉冲,使计算机进入复位状态,复位靠外部电路实现,常见的复位电路如图4-6所示。上电时+5V电源经R对C3充电,C3上电压建立的过程就是负脉冲的宽度,经倒相后,RST上出现正脉冲使单片机实现上电复位。按钮按下同样使RST实现高电平,实现了操作复位。图4-6 常见复位电
39、路4.3 DS18B20简介与测温电路设计 美国MAXIM公司的子公司Dallas半导体公司的数字温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器,在部使用了板(ON一BOARD)专利技术。全部传感元件与转换电路集成在形如一只三级管的集成电路。一线总线独特而且经济的特点,使用用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18BZO体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。4.3.1 DS18B20 的性能特点(1) 独特的单线接口仅需要一个端口引脚进行通讯;(2) 在DS18B20中的每个器件上偶有独一无二的序列号,因此多
40、个DS18B20可以并联在唯一的三线上,实现多点组网功能;(3) 实际应用中不需要任何外部器件即可实现(4) 可通过数据线供电,电压围为3.05.5V;(5) 零待机功耗(6) 数字温度计的分辨率用户可以从9位到12位选择(7) 用户可定义的非易失性温度报警设置(8) 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件(9) 负温度特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作、4.3.2 DS18B20的外形和部结构DS18B20 部结构主要由四部分组成:64 位光刻ROM、温度传感器、非挥发的温度报警触发器TH 和TL、配置寄存器。DS18B20 的管脚排列如图4-
41、7所示:引脚定义:(1) DQ 为数字信号输入/输出端;(2) GND 为电源地;(3) VDD 为外接供电电源输入端(在寄生电源接线方式时接地)。图4-7 DS18B20 的管脚排列图DS18B20采用3角PR-35封装或8角SOIC封装,其部结构如图4-8所示:64位ROM 和单线接口电流检测存储器和控制器 高速 缓存存储器8位CRC生成器温度敏感元件低温触发器TL高温触发器TH配置寄存器图4-8 DS18B20 部结构图DS18B20 有4 个主要的数据部件:(1)光刻ROM 中的64 位序列号是出厂前被光刻好的,它可以看作是该DS18B20 的地址序列码。64 位光刻ROM 的排列是:
42、开始8 位(28H)是产品类型标号,接着的48 位是该DS18B20 自身的序列号,最后8 位是前面56 位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM 的作用是使每一个DS18B20 都各不相同,这样就可以实现一根总线上挂接多个DS18B20 的目的。(2)DS18B20 中的温度传感器可完成对温度的测量,以12 位转化为例:用16 位符号扩展的二进制补码读数形式提供,以0.0625/LSB 形式表达,其中S 为符号位。表4-2 DS18B20 温度值格式表 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 LS Byte Bit
43、15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit 9 Bit 8MS Byte 2223 21 202-1 2-22-3 2-4 SS S S S 262524这是12 位转化后得到的12 位数据,存储在18B20 的两个8 比特的RAM 中,二进制中的前面5 位是符号位,如果测得的温度大于0,这5 位为0,只要将测到的数值乘于0.0625 即可得到实际温度;如果温度小于0,这5 位为1,测到的数值需要取反加1 再乘于0.0625 即可得到实际温度。例如+125的数字输出为07D0H,+25.0625的数字输出为0191H,-25.0625的数字输出为FF6FH,-55
44、的数字输出为FC90H。(3)DS18B20 温度传感器的存储器DS18B20 温度传感器的部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器TH、TL 和结构寄存器。表4-3 DS18B20 温度数据表TEMPERATURE DIGITAL OUTPUT (Binary) DIGITAL OUTPUT (Hex) +125 0000 0111 1101 0000 07D0h +85 0000 0101 0101 0000 0550h +25.0625 0000 0001 1001 0001 0191h +10.125 0000 0000 101
45、0 0010 00A2h +0.5 0000 0000 0000 1000 00008h 0 0000 0000 0000 0000 00000h -0.5 1111 1111 1111 1000 FFF8h -10.125 1111 1111 0101 1110 FF5Eh -25.0625 1111 1110 0110 1111 FE6Eh -551111 1100 1001 0000 FC90hThe power on reset value of the temperature resister is +85 THE (4)配置寄存器该字节各位的意义如表4-4所示:表4-4配置寄存器结构111R0R1TM11低五位一直都是1 ,TM 是测试模式位,用于设置DS18B20 在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改