《2.1《花边有多宽》教案 (北师大版九年级上)(8套)-花边有多宽 教案 (1)doc--初中数学 .doc》由会员分享,可在线阅读,更多相关《2.1《花边有多宽》教案 (北师大版九年级上)(8套)-花边有多宽 教案 (1)doc--初中数学 .doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、http:/http:/ 永久免费在线组卷永久免费在线组卷课件教案下载课件教案下载 无需无需注册和点数注册和点数http:/http:/ 永久免费在线组卷永久免费在线组卷 课件教案下载课件教案下载 无需无需注册和点数注册和点数第二章一元二次方程1、花边有多宽学习目标:1、经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型。2、经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。重点:认识产生一元二次方程知识的必要性难点:列方程的探索过程教学过程:一、简要回顾,方程思想简要回顾方程知识,方程在生活中的应用,以及用方程思想解决实际问题时的大致思路:1、把待求
2、的量用字母表示出来;2、把已知量与未知量放在同等地位进行运算;3、寻求建立等量关系4、解方程(组)体会感悟:往往解决一个未知数的问题,就需要建立一个等量关系;解决两个未知数的问题,则需要建立两个等量关系。二、展示素材,创设情境在处理下面的每一个素材时,都带领学生经历探求思路、建立方程、分析特点三个过程,并从中激发学生的学习兴趣。1、艺术设计一块四周镶有宽度相等的花边的地毯如图所示,它的长为 8m,宽为 5m。如果地毯中央长方形图案的面积为 18m2,那么花边有多宽?2、趣味数学口算:365141312111022222这是俄罗斯画家别尔斯基的一幅题为难题的名画中写在教室黑板上的一道题,此画上面
3、还画了拉钦斯基和他的作口算的学生们。拉钦斯基(18361902)一度曾在大学中任自然科学教授,后来辞去大学的职务,成为一名普通的乡村教师,在这期间,对非标准习题的解法以及口算给予很大注意。从惊奇与趣味中激发学生思考:这样的数组还有吗?如何求解?http:/http:/ 永久免费在线组卷永久免费在线组卷课件教案下载课件教案下载 无需无需注册和点数注册和点数http:/http:/ 永久免费在线组卷永久免费在线组卷 课件教案下载课件教案下载 无需无需注册和点数注册和点数设未知数的技巧。联想勾股定理中:222543,3、梯子移动如图,一个长为 10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为
4、8m。如果梯子的顶端下滑 1m,那么梯子的底端滑动多少米?及时教育学生,要学会用数学的眼光观察生活中的现象,培养自己发现问题与解决问题的能力。4、莲花问题平平湖水清可鉴,平平湖水清可鉴,面上半尺生红莲。面上半尺生红莲。出泥不染婷婷立,出泥不染婷婷立,忽被强风吹一边。忽被强风吹一边。渔人观看忙向前,渔人观看忙向前,花离原位两尺远。花离原位两尺远。能算诸君请解题:能算诸君请解题:湖水如何知深浅?湖水如何知深浅?此诗出自十二世纪印度数学家婆什迦罗(Bhaskara;11141185)之手。诗文简洁,数学內容也不太难。同时,也可介绍九章算术第九章第六题“葭生中央”问题:今有池方一丈,葭生其中央,出水一
5、尺。引葭赴岸,适与岸齐。问水深、葭长各几何。三、观察归纳,抽象命名从上面的几个素材中可以看出,这类方程在生活中大量出现,回忆前面在学习“黄金分割”时,我们曾经得到方程012 xx,其中215 x,这x是如何解出的,当时我们不得而知,但数学应该而且必定能为生活服务,因此我们很有必要对这类方程作一个系统的研究。上述三个方程有什么共同特点?上面的方程都是只含有一个未知数 x 的整式方程,并且都可以化为02cbxax(a、b、c 为常数,a0)的形式,这样的方程叫做一元二次方程注:形式上是一元二次方程,但化简整理后的方程却未必是一元二次方程,例如“印度莲花问题”,其实这仅仅是知识上的简单分类,目的是便
6、于语言叙述与更有利于知识学习,因此没有必要过多计较。四、学生编题,深化理解在感受前面四个素材及归纳一元二次方程形式特点的基础上,启发学生编拟一条与自己身边生活有关的应用题,使列出来的方程是一元二次方程。http:/http:/ 永久免费在线组卷永久免费在线组卷课件教案下载课件教案下载 无需无需注册和点数注册和点数http:/http:/ 永久免费在线组卷永久免费在线组卷 课件教案下载课件教案下载 无需无需注册和点数注册和点数五、随堂练习,及时巩固从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽 4 尺,竖着比门框高 2 尺。另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了。你知道竹竿有多长吗?请根据这一问题列出方程。六、交流体会,概括总结新课结束后,让学生回忆总结本节课学了哪些知识?有什么体会?在本节课中,对自己及其他同学们的学习表现满意吗?对数学这门课有什么感想?