《变压器瓦斯保护仪设计课程设计论文.doc》由会员分享,可在线阅读,更多相关《变压器瓦斯保护仪设计课程设计论文.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 . 辽 宁 工 业 大 学单片机原理与接口技术 课程设计(论文)题目: 变压器瓦斯保护仪设计 院(系): 电气工程学院 专业班级: 电气104班 学 号:100303120 学生: 马志瀛 指导教师:(签字)起止时间:2013.06.24-2013.07.1216 / 20课程设计(论文)任务与评语院(系):电气工程学院 教研室: 电气教研室学 号100303120学生马志瀛专业班级电气104班课程设计(论文)题目变压器瓦斯保护仪设计课程设计(论文)任务该检测仪实时监测变压器油的流速,当流速超过阈值时,启动相应的开关量输出控制启动保护装置,并发出报警信号。设计任务:1. CPU最小系统设计(
2、包括CPU选择,存储器,晶振电路,复位电路)2. 传感器选择与接口电路设计3. 开关量输出接口与报警电路设计4. 程序流程图设计以与具体程序编写技术参数:1变压器容量是5000KVA2保护仪的工作电源为220V3变压器的流速上限为0.6m/s设计要求:1、分析系统功能,尽可能降低成本,选择合适的单片机、AD转换器、输出电路等;2、应用专业绘图软件绘制硬件电路图和软件流程图;3、按规定格式,撰写、打印设计说明书一份,其中程序开发要有详细的软件设计说明,详细阐述系统的工作过程,字数应在4000字以上。进度计划第1天 查阅收集资料第2天 总体设计方案的确定第3-4天 CPU最小系统设计第5天 传感器
3、选择与接口电路设计第6天开关量输出接口与报警电路设计第7天 程序流程图设计第8天 软件编写与调试第9天 设计说明书完成第10天 答辩指导教师评语与成绩平时: 论文质量: 答辩:总成绩: 指导教师签字: 年 月 日注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘 要变压器作为电力系统输电不可或缺的装置,其可靠性和安全性对整个电网的可靠,持续供电起着关键作用。瓦斯保护作为变压器保护的重要组成部分,是变压器安全,可靠运行的基础。本文阐述了变压器瓦斯保护作用与其设计过程。针对本次设计,选用QJ1-80气体继电器作为瓦斯保护的继电器,再由按键电路连入CPU进行处理计算,通过报警系统进行报
4、警。关键词:变压器;瓦斯保护;QJ1-80气体继电器目 录第1章 绪论11.1 变压器保护概况11.2 变压器瓦斯保护概况21.3 本文研究容2第2章 CPU最小系统设计42.1瓦斯保护仪总体设计方案42.2 CPU的选择42.3 数据存储器扩展62.4 复位电路设计72.5 时钟电路设计72.6 CPU最小系统图8第3章 瓦斯保护仪输入输出接口电路设计93.1 瓦斯继电器的选择93.2 瓦斯保护仪检测接口电路设计93.2.1 独立式按键电路选择93.2.2 模拟量检测接口电路113.3 瓦斯保护仪输出接口电路设计11第4章 瓦斯保护仪软件设计134.1 软件实现功能综述134.2 流程图设计
5、134.2.1 主程序流程图设计134.2.2 模拟量检测流程图设计144.2.3 报警装置流程图设计144.3 程序清单15第5章 系统设计与分析165.1 系统原理图165.2 系统原理综述16第6章 课程设计总结17参考文献18第1章 绪论1.1 变压器保护概况变压器作为联系不同电压等级网络的设备,是电力系统中极其重要组成部分,它在电力系统的发电,输电,配电等各个环节中被广泛使用。随着近些年来,电力系统规模的不断扩大,电压等级的提高,增加了很多大容量的变压器,因而它的安全运行与否,是整个电力系统能否连续稳定工作的关键,也是电力系统可靠工作的必要条件。而且电力变压器本身造价昂贵,一旦发生故
6、障而遭到破坏,将给维修带来很大困难,造成大的经济损失。因此,必须根据变压器的容量和重要程度,并考虑到可能发生的各种故障类型和不正常运行状态,来装设性能良好、工作可靠的继电保护装置。分析电力变压器的故障,可分为短路故障和不正常运行状态两种,而变压器的短路故障,又可按发生在变压器的外部情况分为部故障和外部故障。变压器的部故障主要是指各相绕组之间发生的相间短路、绕组的线匝之间发生的匝间短路、绕组或引出线通过外壳发生的接地短路故障等。变压器的外部故障主要是指外部绝缘套管和引出线上发生的相间短路和直接接地短路故障。根据上述故障类型和不正常运行状态,变压器应装设以下保护:(1)瓦斯保护 对于变压器油箱的各
7、种故障以与油面的降低,应装设瓦斯保护,它反应于油箱部所产生的气体或油流而动作,同时也能反应绕组的开焊故障。(2)纵联差动保护或电流速断保护 为反应变压器绕组和引出线的相间短路故障,中性点直接接地侧绕组和引出线的接地短路故障以与绕组匝间短路故障,应装设纵联差动保护或电流速断保护。保护动作后,跳开变压器各电源侧的断路器。(3)反应外部相间短路的后备保护 动作于变压器的外部故障和作为主保护的后备保护,根据变压器容量和应用情况,可分别采用过电流保护、复合电压起动的过电流保护、负序电流与单相式低电压起动的过电流保护、阻抗保护。(4)反映外部接地短路的接地保护 对中性点直接接地电力网,由外部接地短路引起过
8、电流时,应装设零序电流保护。当电力网中部分变压器中性点接地运行,应根据具体情况,装设专有的保护装置,如零序过电压保护,中性点装放电间隙加零序电流保护等。(5)过负荷保护 对0.4MVA以上的变压器,当数台并列运行,或单独运行并作为其他负荷的备用电源时,应根据可能过负荷的情况,装设过负荷保护。过负荷保护接于一相电流上,并延时作用于信号。(6)过励磁保护 高电压侧电压为500KV与以上的变压器,对频率降低和电压升高而引起的变压器励磁电流的升高,应装设过励磁保护。(7)非电量保护对变压器本体和有载调压部分的温度,油箱压力升高以与冷却系统的故障,应按现行变压器标准的要求,装设可作用于信号或动作于跳闸的
9、装置。为实现上述保护容的功能,适应当今大容量变压器应用的日益增多以电力系统网络日益复杂化的趋势,并伴随着计算机技术的迅速发展,微机继电保护装置在高压电王中得到了广泛的应用,成为目前继电保护中最重要的保护形式。微机保护相比与传统的保护装置,具有更高的可靠性、快速性和灵敏度,可更大限度的保证电力系统和变压器的安全运行,减少事故的损失。1.2 变压器瓦斯保护概况瓦斯保护是变压器部故障的基本保护,它的主要器件是瓦斯继电器,安装的位置在油箱与油枕之间的联接管道中。当变压器油箱部发生故障时,短路电流产生的电弧使变压器油和其他绝缘材料分解,从而产生大量的可燃性气体,这种可燃性气体统称为瓦斯气体。故障程度越严
10、重,产生的瓦斯气体越多,流速越快,气流中还夹杂着细小的、灼热的变压器油。瓦斯保护是利用变压器油受热分解所产生的热气流和热油流实施保护动作。在瓦斯保护装置中,反应这些特性的基本器件是瓦斯继电器。 在变压器正常工作时,瓦斯继电器的容器一般是充满变压器油的,它的两对灵敏水银触点是断开的。如果变压器部出现轻微故障,此时上面一对水银触点闭合,接通信号回路,发出报警信号,即继电器轻瓦斯动作。如果变压器部发生严重故障,使下面一对水银触点闭合,接通跳闸回路,切断与变压器连接的所有电源,从而起到保护变压器的作用,即继电器中瓦斯保护。1.3 本文研究容该检测仪实时监测变压器油的流速,当流速超过阈值时,启动相应的开
11、关量输出控制启动保护装置,并发出报警信号。本设计主要设计容是:1. CPU最小系统设计(包括CPU选择,存储器,晶振电路,复位电路)2. 继电器选择与接口电路设计3. 开关量输出接口与报警电路设计4. 程序流程图设计以与具体程序编写第2章 CPU最小系统设计2.1 瓦斯保护仪总体设计方案图2.1 瓦斯保护仪原理框图变压器瓦斯保护的主要元件就是瓦斯继电器,它安装在油箱与油枕之间的连接管中。当变压器出现部故障时,产生的气体将聚集在瓦斯继电器的上部,使油面降低。当油面降低到一定程度后,上浮筒便下沉,使水银接点接通,发出信号。如果是严重故障,油流会冲击挡板,使之偏转,并带动挡板后的连动杆向上转动,挑动
12、与水银接点卡环相连的连动环,使水银接点分别向与油流垂直的两侧转动,两水银接点同时接通,使开关跳闸或发出信号。信号经按键电路送入CPU, CPU对采样值进行数值计算,处理后,驱动显示器显示出被测气体的瓦斯浓度值,若被测气体的瓦斯浓度超过报警电路预定的数值时,报警电路即发出声、光报警信号,并启动输出相应的开关量信号,检测仪由AC220V供电。2.2 CPU的选择CPU是瓦斯保护仪的核心,完成数据采集、处理、输出、显示等功能,是整个仪器正常工作的基础,它的选择直接关系到整个系统的工作。选择通用性强、功耗小、性能稳定良好的8位CMOS微处理器芯片AT89C51,它与常用MCS-51型单片机兼容,工作电
13、压为2.7V6.OV,具有32条可编程I/O端口,3个16位定时计数器,2568位部RAM,带8K字节快闪EEPROM的特点,大大简化了电路的设计。引脚图如图:图2.2 89C51 引脚图部分引脚功能说明:XTAL1:接外部晶振的一个引脚。在单片机部,它是一反相放大器输入端,这个放大器构成了片振荡器。它采用外部振荡器时,此引脚应接地。XTAL2:接外部晶振的一个引脚。在片接至振荡器的反相放大器输出端和部时钟发生器输入端。当采用外部振荡器时,则此引脚接外部振荡信号的输入。RST:AT89C51的复位信号输入引脚,高电位工作,当要对芯片复位时,只要将此引脚电位提升到高电位,并持续两个机器周期以上的
14、时间,AT89C51便能完成系统复位的各项工作,使得部特殊功能寄存器的容均被设成已知状态。ALE/:ALE表示允许地址锁存允许信号。当访问外部存储器时,ALE信号负跳变来触发外部的8位锁存器(如74LS373),将端口P0 的地址总线(A0-A7)锁存进入锁存器中。在非访问外部存储器期间,ALE引脚的输出频率是系统工作频率的1/16,因此可以用来驱动其他外围芯片的时钟输入。:访问外部程序存储器选通信号,低电平有效。在访问外部程序存储器读取指令码时,每个机器周期产生二次信号。在执行片程序存储器指令时,不产生PSEN 信号,在访问外部数据时,亦不产生信号。P0:P0口(P0.0P0.7)是一个8位
15、漏极开路双向输入输出端口,当访问外部数据时,它是地址总线(低8位)和数据总线复用。外部不扩展而单片应用时,则作一般双向I/O口用。P0口每一个引脚可以推动8个LSTTL负载。P2:P2口(P2.0P2.7)是具有部提升电路的双向I/0端口(准双向并行I/O口),当访问外部程序存储器时,它是高8位地址。外部不扩展而单片应用时,则作一般双向I/O口用。每一个引脚可以推动4个LSTL负载。P1:P1口(P1.0P1.7)口是具有部提升电路的双向I/0端口(准双向并行I/O口),其输出可以推动4个LSTTL负载。仅供用户作为输入输出用的端口。P3:P3口(P3.0P3.7)口是具有部提升电路的双向I/
16、0端口(准双向并行I/O口),它还提供特殊功能,包括串行通信、外部中断控制、计时计数控制与外部随机存储器容的读取或写入控制等功能。其特殊功能引脚分配如下:P3.0 RXD 串行通信输入P3.1 TXD 串行通信输出P3.2 外部中断0输入,低电平有效P3.3 外部中断1输入,低电平有效P3.4 T0 计数器0 外部事件计数输入端P3.5 T1 计数器1 外部事件计数输入端P3.6外部随机存储器的写选通,低电平有效P3.7 外部随机存储器的读选通,低电平有效在设计中用到了多片串行通信的芯片,但选用的单片机AT89C51只有一个串行口,这给连接带来了极大的麻烦。在设计中,用单片机未用到的普通I/O
17、口辅之控制软件来模拟串行口工作,从而解决了串行口不够用的难题。2.3 数据存储器扩展89C51单片机片有128B的RAM存储器,在实际应用中仅靠这128B的数据存储器是远远不够的。这种情况下可利用89C51单片机所具有的拓展功能,拓展数据存储器。本文利用6264与单片机进行拓展。6264是8K*8位的静态随机存储器,采用CMOS工艺制造,单一+5电源供电,额定功耗200mW,典型存取时间200ns,为28线双列直插式封装。如图2.3所示:图2.3 89C51 与 6264 的扩展2.4 复位电路设计复位操作可以使单片机初始化,也可以使死机状态下的单片机重新启动,因此非常的重要。在时钟电路工作后
18、,只要在单片机的RESET引脚上出现24个时钟振荡脉冲(两个机器周期)以上的高电平,单片机就可以实现复位。为了保证系统可靠复位,在设计复位电路时,一般使RESET引脚保持10ms以上的高电平,单片机就可以可靠的复位。本文采用按键复位方式。该方式可以通过按键实现复位。按下键后,通过R1和R2形成回路,使RESET端产生高电平。按键的时间决定了复位的时间。图2.4 按键复位电路图2.5 时钟电路设计片电路与片外器件就构成一个时钟产生电路,CPU的所有操作均在时钟脉冲同步下进行。片振荡器的振荡频率非常接近晶振频率,一般多在1.2MHz24MHz之间选取。C1、C2是反馈电容,其值在20pF100pF
19、之间选取,典型值为30pF。本电路选用的电容为30pF,晶振频率为12MHz。振荡周期; 机器周期; 指令周期图2.5 晶振电路图2.6 CPU最小系统图根据上述4节图,形成完整的CPU最小系统图,如图2.6所示:图2.6 CPU最小系统第3章 瓦斯保护仪输入输出接口电路设计3.1 瓦斯继电器的选择本次课设选用QJ1-80气体继电器作为瓦斯保护的继电器,QJ1-80气体继电器,是油浸式变压器所用的一种保护装置,由于变压器部故障而使油分解产生气体或造成油流涌动时,使气体继电器的接点动作,接通指定的控制回路,并与时发出信号或自动切除变压器。在选择QJ1-80气体继电器时,主要从以下几个测试实验来衡
20、量:1、轻瓦斯试验将瓦斯继电器放在实验台上固定,(继电器上标注箭头指向油枕),打开实验台上部阀门,从实验台下面气孔打气至继电器部完全充满油后关闭阀门,放平实验台,打开阀门,观察油面降低到何处刻度线时轻瓦斯触点导通,我局轻瓦斯定值一般为250mm 350mm ,若轻瓦斯不满足要求,可以调节开口杯背后的重锤改变开口杯的平衡来满足需求。2、 重瓦斯试验(流速实验)从实验台气孔打入气体至继电器部完全充满油后关上阀门,放平实验台,打开实验台表计电源,选择表计上的瓦斯孔径档位,测量方式选在“流速”,再继续打入气体,观察表计显示的流速值为整定值止,快速打开阀门,此时油流应能推动档板将重瓦斯触点导通。重瓦斯定
21、值一般为1.01.2m/s,若重瓦斯不满足要求,可以通过调节指针弹簧改变档板的强度来满足需求。3、 密闭试验同上面的方法将起部充满油后关上阀门,放平实验台,将表计测量方式选在“压力”,打入气体,观察表计显示的压力值数值为0.25MPa,保持该压力40分钟,检查继电器表面的桩头跟部是否有油渗漏。3.2 瓦斯保护仪检测接口电路设计3.2.1 独立式按键电路选择因为CPU不能直接接收模拟量信号,所以需要按键电路把开关关断讯号传入CPU中,发出警报。独立式按键电路配置灵活,软件结构简单,但每个按键必须占用一根I/O口线,在按键数量较多时,I/O口线浪费较大。由于此次设计只需两个I/O,所以适合选用独立
22、式按键电路。对于键盘的监测,就是否有键按下的信息输压测量信号,把瓦斯继电器的信号传入CPU中的方式分为中断方式与查询方式两种。本次课设选用查询方式,如电路图3.1所示:图3.1 独立式按键电路下面是查询方式的键盘程序。K0到K7为功能程序入口地址标号,其地址间隔应能容纳JMP指令字节,PROM0PROM7分别为每个按键的功能程序。设I/O为P0口。START:MOV A,#0FFH ; MOV P0,A ;置P1口为输入状态 MOV A,P0;键状态输入JNB ACC.0,K0 ;检测0号键是否按下,按下转 JNB ACC.1,K1 ;检测1号键是否按下,按下转JNB ACC.2,K2 ;检测
23、2号键是否按下,按下转 JNB ACC.3,K3 ;检测3号键是否按下,按下转 JNB ACC.4,K4 ;检测4号键是否按下,按下转 JNB ACC.5,K5 ;检测5号键是否按下,按下转 JNB ACC.6,K6 ;检测6号键是否按下,按下转 JNB ACC.7,K7 ;检测7号键是否按下,按下转 JMP START ;无键按下返回,再顺次检测K0:AJMP PROM0K1:AJMP PROM1 K7:AJIMP PROM7PROM0: ;0号键功能程序 JMP START ;0号键功能程序执行完返回PROM1: ;0号键功能程序 JMP START ;1号键功能程序执行完返回 ; 7号键
24、功能程序PROM7: JMP START ;7号键功能程序执行完返回3.2.2 模拟量检测接口电路由气体继电器和按键电路组成的模拟量检测接口电路图,如图3.2所示:图3.2 气体继电器与按键电路连接3.3 瓦斯保护仪输出接口电路设计报警电路由NPN三极管、蜂鸣器、LED和限流电阻组成,如图3.3所示。由单片机两个I/0口控制声报警方式和光报警方式,实际应用时,可以通过软件设置选择其中一种报警方式,也可以两种都选择。8050是一种常用的小功率开关三极管,它的最大负载电流为700mA, VCEO=20V,饱和压降为0.5V。 Q1和Q2分别作为蜂鸣器和发光二极管的驱动器,蜂鸣器的正常工作为3V,声
25、音强度为80dB,发光二极管的额定电流为5lOmA。当单片机I/O口信号为高电平时,三极管导通,蜂鸣器发出报警声音,发光二极管则给出光指示信号,其中,R2, R3和R1均为限流电阻。图3.3报警装置电路图第4章 瓦斯保护仪软件设计4.1 软件实现功能综述该系统软件主要由主程序、按键程序和报警子程序等模块组成,因为C语言编写的软件易于实现模块化,生成的机器代码质量高、可读性强、移植好。1) 比较监测到的瓦斯浓度值值和报警设置值,发现超限则蜂鸣器报警提示2) 报警的同时启动输出相应的开关量信号。4.2 流程图设计4.2.1 主程序流程图设计主程序功能是将继电器程序、按键程序与数据程序结合在一起检验
26、是否发生故障,灵敏水银触点是否闭合,闭合则报警,反之则不报警,主程序流程图如图4.1所示:图4.1主流程图4.2.2 模拟量检测流程图设计89C51单片机独立式按键子程序流程图,如图4.2所示。图4.2 按键子程序流程图4.2.3 报警装置流程图设计报警电路分为蜂鸣器报警电路和LED发光报警电路组成。当输入端为低电平时,有电流通过蜂鸣器,蜂鸣器发出声音报警。而当输入端为高电平时不报警。当输入端KG1接通,启动00按键程序并报警,当输入端KG2,启动01按键程序并报警,当输入端KG1和KG2同时接通,启动10按键程序并报警程序框图如图4.3所示:图4.3 报警子程序流程框图4.3 程序清单STA
27、RT:CLR A;MOV P0,A;MOV P1,A; MOV ACC.0,P0;MOV ACC.1,P1;JC ACC.0,K0(KG1);JC ACC.1,K1(KG2); JMP START;K0:AJMP PROM0;K1:AJMP PROM1;PROM0:SETB P1; JMP START;PROM1:SETB P2; JMP START;第5章 系统设计与分析5.1 系统原理图综上所述,此系统电路原理图如图5.1所示图5.1 系统总结线图5.2 系统原理综述当变压器部发生轻微故障,使油位降低时,瓦斯继电器KG的上接点KG1动作,接通信号继电器1KS发出信号。当变压器部发生严重故障
28、,使瓦斯继电器KG的下接点KG2动作,KG1和KG2分别接按键电路K0、K1,CPU再由按键状态启动相应的报警。第6章 课程设计总结本次课设设计了变压器的保护装置,设计中分别选用气体继电器、按键按电路、报警电路等作为保护电路的重要组成部分。其运行过程为:当油浸式变压器的部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,其强烈程度随故障的严重程度不同而不同。在瓦斯保护继电器,上部是一个密封的浮筒,下部是一块金属档板,两者都装有密封的水银接点。浮筒和挡板可以围绕各自的轴旋转。在正常运行时,继电器充满油,浮筒浸在油,处于上浮位置,水银接点断开;档板则由于本身重量而下垂,其水银接点也是断开的。当
29、变压器部发生轻微故障时,气体产生的速度较缓慢,气体上升至储油柜途中首先积存于瓦斯继电器的上部空间,使油面下降,浮筒随之下降而使水银接点闭合,当变压器部发生严重故障时,则产生强烈的瓦斯气体,油箱压力瞬时突增,产生很大的油流向油枕方向冲击,因油流冲击档板,档板克服弹簧的阻力,带动磁铁向干簧触点方向移动,使水银触点闭合,按键电路将水银触点闭合信息传入CPU中进行处理、计算,之后发出报警,并关断相应开关。变压器瓦斯信号动作后,运行人员必须对变压器进行检查,查明动作的原因,并立即向上级调度和主管领导汇报,上级主管领导应立即派人去现场提取继电器气样、油样和本体油样,分别作色谱分析。根据有关导则与现场分析结
30、论采取相应的对策, 避免事故的发生,以保证变压器的安全经济运行。参考文献1 梅丽凤等编著 单片机原理与接口技术 清华大学2009.72 晶 主编 Prote199高级应用人民邮电,20003 于海生编著 微型计算机控制技术 清华大学2003.44 何立民MCS-51系列单片机应用系统设计航空航天大学,199015其光.常用测温仪表技术问答.国防工业,19896志全等.智能仪表设计原理与应用.国防工业,1998.67世成.信号放大电路.电子工业,19958 袁季修电力系统安全稳定控制M.中国电力, 1996.9 周玉兰, 王俊永,年全国电网继电保护与安全自动装置运行情况与分析M. 电网技术,200110 王 梦云. 110kV与以上变压器事故统计分析 M.电力设备, 200511 王维俭电气主设备继电保护原理与应用(第2版)M.中国电力, 2002.12 保会, 项根电力系统继电保护M.中国电力, 2005.13 介才工厂供电第四版M.机械工业,200414 王葵、莹电力系统自动化第二版M .中国电力,200715 黄益庄.变电所综合自动化技术M .中国电力,200016 毛锦庆.电力系统继电保护实用技术问答第二版 M.中国电力, 199917 许建安.电力系统微机继电保护M.中国水利水电,2001