《【初中数学解题技法】半角模型.docx》由会员分享,可在线阅读,更多相关《【初中数学解题技法】半角模型.docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、半角模型 模型 倍长中线或类中线(与中点有关的线段)构造全等三角形已知如图:2=AOB,OA=OB。连接FB,将FOB绕点O旋转至FOA的位置,连接FE、FE,可得OEFOEF。基本模型(1)正方形内含半角如图,在正方形ABCD中,E、F分别是BC、CD边上的点,EAF=45,求证:EF=BE+DF。 基本模型(2)等边三角形内含半角基本模型(3)等腰直角三角形内含半角模型分析(1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点;(2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系;(3)常见的半角模型是90含45,120含60。核心母题 如图,在正方形ABCD中,E、F分
2、别是BC、CD边上的点,EAF=45,求证:EF=BE+DF. 变式一:如图,E、F分别是边长为 1的正方形ABCD的边BC、CD上的点,若ECF的周长是2,求EAF的度数? 变式二:如图,在正方形ABCD中,E、F分别是BC、CD边上的点,EAF=45,AGEF,求证:AG=AB. 综合:在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM +DN,求证:.MAN=.AM、AN分别平分BMN和DNM. 练习 1、 如图,在四边形ABCD中,AB=BC,A=C=90,B=135,K、N分别是AB、BC上的点,若BKN的周长是AB的2倍,求KDN的度数? 2、 已知:正方形AB
3、CD中,MAN=45,MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N当MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN(1)当MAN绕点A旋转到BMDN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想3、如图,在四边形ABCD中,AB=AD,B+D=180,E、F分别是边BC、CD上的点,且2EAF=BAD,(1) 求证:EF=BE+FD(2) 如果E、F分别是边BC、CD延长线上的点,其他条件不变,结论是否仍然成立?
4、说明理由。 4、如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,ABC+AED=180求证:AD平分CDE. 5、如图,已知AB=CD=AE=BC+DE=2,ABC=AED=90,求五边形ABCDE的面积 6、如图1在四边形ABCD中AB=AD,B+D=180,E、F分别是边BC、CD上的点,且BAD=2EAF(1)求证:EF=BE+DF;(2)在(1)问中,若将AEF绕点A逆时针旋转,当点E、F分别运动到BC、CD延长线上时,如图2所示,试探究EF、BE、DF之间的数量关系 7、如图,在ABC中,ACB=90,AC=BC,P是ABC内一点,且PA=3,PC=2,PB=1求BPC
5、的度数 半角模型条件:思路:(1)、延长其中一个补角的线段(延长CD到E,使ED=BM ,连AE或延长CB到F,使FB=DN ,连AF ) 结论:MN=BM+DN AM、AN分别平分BMN和DNM(2) 对称(翻折) 思路:分别将ABM和ADN以AM和AN 为对称轴翻折,但一定要证明 M、P、N三点共线.(B+D=且AB=AD)例题应用:例1、在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM +DN,求证:.MAN= . .AM、AN分别平分BMN和DNM. 思路同上略. 例1拓展:在正方形ABCD中,已知MAN=,若M、N分别在边CB、DC的延长线上移动, .试探究线段MN、BM 、DN之间的数量关系. .求证:AB=AH. 提示如图: 例2.在四边形ABCD中,B+D=,AB=AD,若E、F分别在边BC、CD上,且满足EF=BE +DF.求证: 提示:练习巩固:如图,在四边形ABCD中,B=D=,AB=AD,若E、F分别在边BC、CD 上的点,且. 求证:EF=BE +DF. 提示: