《专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题(原卷版).docx》由会员分享,可在线阅读,更多相关《专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题(原卷版).docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题【专题说明】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。确定动点轨迹为圆或者圆弧型的方法:(1) 动点到定点的距离不变,则点的轨迹是圆或者圆弧。(2) 当某条边与该边所对的角是定值时,该角的顶点的轨迹是圆,具体运用如下;见直角,找斜边,想直径,定外心,现圆形见定角,找对边,想周角,转心角,现圆形【知识精讲】如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是
2、此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有AMQAOP,QM:PO=AQ:AP=1:2【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AOQ点轨迹相当于是P点轨迹成比例缩放根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系如图,P是圆O上一个动点,A为定点,连接AP,作AQAP且AQ=AP考虑:当点P在圆O上运动时,Q点轨迹是? 【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90得A
3、Q,故Q点轨迹与P点轨迹都是圆接下来确定圆心与半径考虑APAQ,可得Q点轨迹圆圆心M满足AMAO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO即可确定圆M位置,任意时刻均有APOAQM如图,APQ是直角三角形,PAQ=90且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑APAQ,可得Q点轨迹圆圆心M满足AMAO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1即可确定圆M位置,任意时刻均有APOAQM,且相似比为2【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”此类问题的必要条件:两个定量主动点、从动点与定点连线
4、的夹角是定量(PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值)【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:PAQ=OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩古人云:种瓜得瓜,种豆得豆“种”圆得圆,“种”线得线,谓之“瓜豆原理”【精典例题】1、如图,在中,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )A5B6C7D82、如图,在矩形纸片ABCD中,点E是AB的中
5、点,点F是AD边上的一个动点,将沿EF所在直线翻折,得到,则的长的最小值是AB3CD3、如图,在RtABC中,ABC90,ACB30,BC23 ,ADC与ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DECF,BE、DF相交于点P,则CP的最小值为( )A1B3C32D24、如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将EBF沿EF所在直线折叠得到EB F,连接B D,则B D的最小值是_5、如图,中,是内部的一个动点,且满足,则线段长的最小值为_.6、如图,点在半圆上,半径,点在弧上移动,连接,作,垂足为,连接,点在移动的过程中,的最小值是_7、如图,过抛物线上一点A作轴的平行线,交抛物线于另一点B,交轴于点C,已知点A的横坐标为(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;连结BD,求BD的最小值;当点D落在抛物线的对称轴上,且在轴上方时,求直线PD的函数表达式7