变频器节能计算(20页).doc

上传人:1595****071 文档编号:43094493 上传时间:2022-09-16 格式:DOC 页数:20 大小:197KB
返回 下载 相关 举报
变频器节能计算(20页).doc_第1页
第1页 / 共20页
变频器节能计算(20页).doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《变频器节能计算(20页).doc》由会员分享,可在线阅读,更多相关《变频器节能计算(20页).doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-变频器节能计算-第 20 页变频不是到处可以省电,有不少场合用变频并不一定能省电。 作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。变频节能什么是变频器变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 PWM和PAM的不同点是什么PWM是英文Pulse Width

2、Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。 PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 电压型与电流型有什么不同变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。 为什么变频器的电压与电流成比例的改变异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,

3、那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。 电压下降影响电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加? 频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。 采用变频器对电机影响采用变频器运转时,电机的起动电流、起动转矩怎样? 采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125

4、%200%)。用工频电源直接起动时,起动电流为67倍,因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)。起动电流为额定电流的1.21.5倍,起动转矩为70%120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。 V/f模式是什么意思频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择 按比例地改V和f时,电机的转矩如何变化频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地

5、转矩有减小的倾向。因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法 60赫兹以下的输出功率在说明书上写着变速范围606Hz,即10:1,那么在6Hz以下就没有输出功率吗? 在6Hz以下仍可输出功率,但根据电机温升和起动转矩的大小等条件,最低使用频率取6Hz左右,此时电动机可输出额定转矩而不会引起严重的发热问题。变频器实际输出频率(起动频率)根据机种为0.53Hz. 60赫兹转矩能否固定对于一般电机的组合是在60Hz以上也要求转矩一定,是否可以? 通常情况下时不可以的。在60Hz以

6、上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在 高速下要求相同转矩时,必须注意电机与变频器容量的选择。 所谓开环是什么意思给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环 ”,不用PG运转的就叫作“开环”。通用变频器多为开环方式,也有的机种利用选件可进行PG反馈. 实际转速对于给定速度有偏差时如何办开环时,变频器即使输出给定频率,电机在带负载运行时,电机的转速在额定转差率的范围内(1%5%)变动。对于要求调速精度比较高,即使负载变动也要求在近于给定速度下运转的场合,可采用具有PG反馈功能的变频器(选用件)。 用带有PG的电机,反馈后速度精度能提

7、高吗具有PG反馈功能的变频器,精度有提高。但速度精度的植取决于PG本身的精度和变频器输出频率的分辨率。 失速防止功能是什么意思如果给定的加速时间过短,变频器的输出频率变化远远超过转速(电角频率)的变化,变频器将因流过过电流而跳闸,运转停止,这就叫作失速。为了防止失速使电机继续运转,就要检出电流的大小进行频率控制。当加速电流过大时适当放慢加速速率。减速时也是如此。两者结合起来就是失速功能。加速时间与减速时间意义 有加速时间与减速时间可以分别给定的机种,和加减速时间共同给定的机种,这有什么意义? 加减速可以分别给定的机种,对于短时间加速、缓慢减速场合,或者对于小型机床需要严格给定生产节拍时间的场合

8、是适宜的,但对于风机传动等场合,加减速时间都较长,加速时间和减速时间可以共同给定。 什么是再生制动电动机在运转中如果降低指令频率,则电动机变为异步发电机状态运行,作为制动器而工作,这就叫作再生(电气)制动。 是否能得到更大的制动力从电机再生出来的能量贮积在变频器的滤波电容器中,由于电容器的容量和耐压的关系,通用变频器的再生制动力约为额定转矩的10%20%。如采用选用件制动单元,可以达到50%100%。 请说明变频器的保护功能保护功能可分为以下两类: (1) 检知异常状态后自动地进行修正动作,如过电流失速防止,再生过电压失速防止。 (2) 检知异常后封锁电力半导体器件PWM控制信号,使电机自动停

9、车。如过电流切断、再生过电压切断、半导体冷却风扇过热和瞬时停电保护等。 变频器保护如何工作为什么用离合器连续负载时,变频器的保护功能就动作? 用离合器连接负载时,在连接的瞬间,电机从空载状态向转差率大的区域急剧变化,流过的大电流导致变频器过电流跳闸,不能运转。 变频器终止原因在同一工厂内大型电机一起动,运转中变频器就停止,这是为什么? 电机起动时将流过和容量相对应的起动电流,电机定子侧的变压器产生电压降,电机容量大时此压降影响也大,连接在同一变压器上的变频器将做出欠压或瞬停的判断,因而有时保护功能(IPE)动作,造成停止运转。 什么是变频分辨率?有什么意义?对于数字控制的变频器,即使频率指令为

10、模拟信号,输出频率也是有级给定。这个级差的最小单位就称为变频分辨率。 变频分辨率通常取值为0.0150.5Hz.例如,分辨率为0.5Hz,那么23Hz的上面可变为23.5、24.0 Hz,因此电机的动作也是有级的跟随。这样对于像连续卷取控制的用途就造成问题。在这种情况下,如果分辨率为0.015Hz左右,对于4级电机1个级差为1r/min 以下,也可充分适应。另外,有的机种给定分辨率与输出分辨率不相同。 装设变频器时安装方向是否有限制变频器内部和背面的结构考虑了冷却效果的,上下的关系对通风也是重要的,因此,对于单元型在盘内、挂在墙上的都取纵向位,尽可能垂直安装。 不采用软启动可以吗不采用软起动,

11、将电机直接投入到某固定频率的变频器时是否可以? 在很低的频率下是可以的,但如果给定频率高则同工频电源直接起动的条件相近。将流过大的起动电流(67倍额定电流),由于变频器切断过电流,电机不能起动。 运行中注意问题电机超过60Hz运转时应注意什么问题? 超过60Hz运转时应注意以下事项 (1)机械和装置在该速下运转要充分可能(机械强度、噪声、振动等)。 (2) 电机进入恒功率输出范围,其输出转矩要能够维持工作(风机、泵等轴输出功率于速度的立方成比例增加,所以转速少许升高时也要注意)。 (3) 产生轴承的寿命问题,要充分加以考虑。 (4) 对于中容量以上的电机特别是2极电机,在60Hz以上运转时要与

12、厂家仔细商讨。 变频器可以传动齿轮电机吗?根据减速机的结构和润滑方式不同,需要注意若干问题。在齿轮的结构上通常可考虑7080Hz为最大极限,采用油润滑时,在低速下连续运转关系到齿轮的损坏等。 变频器能驱动单项电机吗变频器能用来驱动单相电机吗?可以使用单相电源吗? 机基本上不能用。对于调速器开关起动式的单相电机,在工作点以下的调速范围时将烧毁 辅助绕组;对于电容起动或电容运转方式的,将诱发电容器爆炸。变频器的电源通常为3相,但对于小容量的,也有用单相电源运转的机种。 变频器本身消耗的功率有多少?它与变频器的机种、运行状态、使用频率等有关,但要回答很困难。不过在60Hz以下的变频器效率大约为94%

13、96%,据此可推算损耗,但内藏再生制动式(FR-K)变频器,如果把制动时的损耗也考虑进去,功率消耗将变大,对于操作盘设计等必须注意。 为什么不能在660Hz全区域连续运转使用一般电机利用装在轴上的外扇或转子端环上的叶片进行冷却,若速度降低则冷却效果下降,因而不能承受与高速运转相同的发热,必须降低在低速下的负载转矩,或采用容量大的变频器与电机组合,或采用专用电机。 使用带制动器的电机时应注意什么制动器励磁回路电源应取自变频器的输入侧。如果变频器正在输出功率时制动器动作,将造成过电流切断。所以要在变频器停止输出后再使制动器动作。 电机不动原因想用变频器传动带有改善功率因数用电容器的电机,电机却不动

14、,清说明原因 变频器的电流流入改善功率因数用的电容器,由于其充电电流造成变频器过电流(OCT),所以不能起动,作为对策,请将电容器拆除后运转,甚至改善功率因数,在变频器的输入侧接入AC电抗器是有效的。 变频器的寿命有多久?变频器虽为静止装置,但也有像滤波电容器、冷却风扇那样的消耗器件,如果对它们进行定期的维护,可望有10年以上的寿命。 风扇问题变频器内藏有冷却风扇,风的方向如何?风扇若是坏了会怎样? 对于小容量也有无冷却风扇的机种。有风扇的机种,风的方向是从下向上,所以装设变频器的地方,上、下部不要放置妨碍吸、排气的机械器材。还有,变频器上方不要放置怕热的零件等。风扇发生故障时,由电扇停止检测

15、或冷却风扇上的过热检测进行保护 电容器寿命判断滤波电容器为消耗品,那么怎样判断它的寿命? 作为滤波电容器使用的电容器,其静电容量随着时间的推移而缓缓减少,定期地测量静电容量,以达到产品额定容量的85%时为基准来判断寿命。 安装方向装设变频器时安装方向是否有限制。 应基本收藏在盘内,问题是采用全封闭结构的盘外形尺寸大,占用空间大,成本比较高。其措施有: (1)盘的设计要针对实际装置所需要的散热; (2)利用铝散热片、翼片冷却剂等增加冷却面积; (3) 采用热导管。 此外,已开发出变频器背面可以外露的型式。 变频器容量想提高原有输送带的速度,以80Hz运转,变频器的容量该怎样选择? 设基准速度为5

16、0Hz,50Hz以上为恒功率输出特性。像输送带这样的恒转矩特性负载增速时,容量 需要增大为80/501.6倍。电机容量也像变频器一样增大 变频调速节能装置的节能原理1、变频节能由流体力学可知,P(功率)=Q(流量) H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,如果水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。即水泵电机的耗电功率与转速近似成立方比的关系。例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8,当转速下降到原转速的1/2时,其耗电量

17、为6.875KW,省电87.5. 2、功率因数补偿节能无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式P=SCOS,Q=SSIN,其中S视在功率,P有功功率,Q无功功率,COS功率因数,可知COS越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COS1,从而减少了无功损耗,增加了电网的有功功率。 3、软启动节能由于电机为直接启动或Y/D启动,启动电流等于(4-7)倍额定电流,这样会对机电设备和供电电网造成严重的冲击,而且还会对电网

18、容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。节省了设备的维护费用。 变频器可以省电这是不可磨灭的事实,在某些情况下可以节电40%以上,但是某些情况还会比不接变频器浪费! 变频器是通过轻负载降压实现节能的,拖动转距负载由于转速没有多大变化,即便是降低电压,也不会很多,所以节能很微弱,但是用在风机环境就不同了,当需要较小的风量时刻,电机会降低速度,我们知道风机的耗能跟转速的1.7次方成正比,所

19、以电机的转距会急剧下降,节能效果明显。如果我们用在油井上,就会因为在返程使用制动电阻白白浪费很多电能反而更废电。 当然,如果环境要求必须调速,变频器节能效果还是比较明显的。不调速的场合变频器不会省电,只能改善功率因数。 1、如果两个一模一样的电机都工作在50HZ的工频状态下,一个使用变频器,一个没有,同时转速和扭矩都在电机的额定状态下,那么变频器还能省电吗?能省多少呢? 答:对于这种情况,变频器只能改善功率因数,并不能节省电力。 2、如果这两个电机的扭矩没有达到电机的额定扭矩状态下工作(频率,转速还是一样50HZ),有变频器的那个能省多少电? 答:如果使用了自动节能运行,这个时刻变频器能降压运

20、行,可以节省部分电能,但是节电不明显。 3、同样的条件,空载状态下能省多少,这三种状态下哪个省的更多? 答:拖动型负载空载状态也节省不了多大的电能。 1.1 变频器工作原理 变频器电路基本工作原理为:三相交流电源经二级管整流桥输出恒定的直流电压,由六组大功率晶体管组成逆变器,利用其开关功能,由高频脉宽调制(PWM)驱动器按一定规律输出脉冲信号,控制晶体管的基极,使晶体管输出一组等幅而不等宽的矩1.1 变频器工作原理 变频器电路基本工作原理为:三相交流电源经二级管整流桥输出恒定的直流电压,由六组大功率晶体管组成逆变器,利用其开关功能,由高频脉宽调制(PWM)驱动器按一定规律输出脉冲信号,控制晶体

21、管的基极,使晶体管输出一组等幅而不等宽的矩形脉冲波形,其幅值为逆变器直流侧电压 Vd而宽度则按正弦规律变化,这一组脉冲可以用正弦波来等效,此脉冲电压用来驱动电机运转,通过控制 PWM驱动器输出波形的幅值和频率,即可改变晶体管输出波形的频率和电压,达到变频调速的目的。1.2 节电原理 在生产中,许多设备的能耗都与机组的转速有关,其中油、水泵最为突出,这些设备一般都是根据生产中可能出现的最大负荷条件,如最大流量和扬程进行选择的,但实际生产中所需的流量往往比设计的最大流量小的多,如果所用的电动机是不能调速的,通常只能通过调节阀门的开度来控制流量其结果在阀门上会造成很大的能量损耗,如果不用阀门调节,而

22、是让电机调速运行,那么,当需要的流量减少时,电动机的转数降低,消耗的能量将会明显减少。可知,当转速下降1/2时,流量下降1/2,压力下降 1/4,功率下降为1/8,即功率与转速成3次方的关系下降。如果不是用关小阀门的方法,而是把电机转速降下来,那么随着泵的输出压头的降低,在输出同样流量的情况下,原来消耗在阀门上的功率就可以完全避免,这就是调速节电的原理所在。简单地说,就是在不装变频调速装置时,泵的出口排量靠出口阀调节,电机易过负荷,流量小时,靠关小阀门调节,增加了管道阻力, 使部分能量白白消耗在泵出口阀门上,安装变频调速器后, 可以降低泵的转速,泵的扬程也相应降低, 电机的电耗也相应降低,使原

23、来消耗在泵出口阀上的能量, 用变频调速方法得到了解决。由于采用恒转矩特性, 变频降速后的电机转矩不变,拖动力矩恒定,可以保证排量,从而实现了节约电能的作用。 2、变频器的应用2.1 变频器在水泵上的应用 我公司第一台变频器是用在污水提升泵上的,型号是FRN75-P74的日本富士产品。由于当时对变频器的性能,可靠性等并不十分了解,所以在污水提升泵上应用变频器属于试验性质的。第一台变频器投用后,电机工作电流下降了近50%,电机运行温度明显下降,机械磨损减少了,维护工作量也减少了,运行中发现,变频器各种保护功能可靠,消除了因电机过载或单相运行而烧毁电机的现象,确保了安全运行。 根据污水提升泵应用变频

24、器的效果,我公司又在生活饮用水和生活热水泵上安装了变频调速器。饮用水和热水泵电机的功率分别是 55 kw 和 37kw,白天用水量大,需将泵的出口阀全打开,而夜间用水量较小,需适当关小出口阀,而关小出阀的后果是造成泵憋压,管网被憋漏的情况也时有发生,为了解决以上问题在饮用水和热水泵上分别安装了变频器,采用了恒压闭环控制方案。投用后,运行平稳,未出现任何故障,即解决了憋压问题又收到了较好的节电效果。2.2 变频器在油泵上的应用 我公司共有各类油泵上百台,总装机容量为近万kw,其中,最大电机容量为500kw。在近几年的工艺改造过程中,为了适应今后生产发展的需要,泵和电机的富裕量都较大,以常减压装置

25、为例,主要机泵的能力可以达到每年加工原油250104 t。而实际生产中,每年的实际加工量为(l00140)104t。调查结果表明,泵的功率消耗在泵出口阀和控制阀上为30%60%。所以在油泵上应用变频器将有较大的节能潜力。 2.3 变频器在风机上的应用 由于锅炉是炼油企业的主要动力,而锅炉鼓风机是锅炉系统主要耗电设备,运行中常有风机震动,轴温过高等现象,所以在鼓风机上安装变频器具有重要意义。选用的变频调速装置应具备多种保护功能,才能较好的保障锅炉运行的安全性和可靠性。经过对锅炉运行状况的调查和认真分析,认为在锅炉鼓风机安装变频器,须在技术上解决以下问题: (l)锅炉的安全运行是全公司动力的根本保

26、证,虽然变频调速装置是可靠的, 但发生问题时,须确保锅炉安全供汽。所以,必须实现工频一变频调速运行的自动切换。 (2)锅炉风机的拖动电机容量为135kw,对于这种大惯量负荷的风机,可能存在扭曲共振。运行中,一旦发生共振,将严重损坏风机和拖动电机。所以,必须计算风机一电机连接轴系扭振临界转速以及采取相应的技术措施。 针对以上问题,采取了如下办法: (1)设置了由工频切换至变频及变频切至工频的快速瞬时切换工能。 经过现场试验及实际应用,切换功能保证了工频一变频间快速瞬时互相切换,能够满足风机运行过程中的切换要求。(2)为了进一步分析风机一电机系统是否可能存在扭曲共振问题,经查阅有关资料及结构图,获

27、得了风机一电机轴系扭振固有频率为:第一阶扭振固有频率为1222.4Hz,第二阶为3867.4Hz。由此可以得出,在050HZ 调速绝不会出现扭曲共振。锅炉鼓风机安装变频器后,收到了以下效果:(1)适当降低炉膛压力可以大幅度地降低风机电耗。当锅炉负荷均为 50 t/h,燃烧工况及操作条件相似的情况下,安装变频器前后的电机电流由180A降为90A,按年8000h计算,年节电30104kw?h。 (2)由于操作控制调节系统的改善,使燃烧工况趋于低氧燃烧,提高了锅炉热效率。风机变频安装前,锅炉风量控制手段是调节风机入口挡板和火嘴风门,入口挡板的调节方法即不灵活又十分粗略,无法进行风量的准确调节,为此,

28、操作中风量往往过大。实现变频调速后,锅炉燃烧过程中氧含量的控制十分方便准确。在操作室就可以对锅炉燃烧所需的风量进行微量调节,使燃烧工况趋于低氧燃烧,过剩空气系数由1.2降为1.1,锅炉热效率提高0.8个百分点,降低了燃料消耗,年节约燃烧油 200500t。 (3)提高了功率因数。变频调速装置上增加了直流电抗器附件,这样即可以防止变频器产生的高次谐波污染电源,也可防止冲击电流,保护整流模块。并使功率因数提高到0.95以上。经过几年时间的运行,证明变频调速技术可靠,节电效果显著,可以推广应用。在化工行业安装在常减压、催化裂化、气体分馏、气体储运、油品储运、锅炉、加热炉风机、供水泵上等。有的采用了闭

29、环控制,有的采用了开环控制,均以转速调节流量,泵出口阀、调节阀全开,取得了较大的节电效果。变频调速节能量的计算方法时间:2009-12-16 09:26:19 来源:工控网 作者:杜俊明一、概述据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩恒转矩和恒功率等几类机械特性,本文仅对平方转矩恒转矩负载的节能进行估算。所谓估算,即在变频器投运前,对使用了变频器

30、后的节能效果进行的计算预测。变频器一旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和510%,风压裕度为10%和10%15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%30%的比较常见。生产中实际操作时,对于离心风机泵类负载常用阀门、挡板进

31、行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。二、节能的估算1、风机、泵类平方转矩负载的变频调速节能风机、泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。采用电动机变频调速来调节流量,比用挡板阀门之类来调节,可节电20%50%,如果平均按30%计算,节省的电量为全国总用

32、电量的9%,这将产生巨大的社会效益和经济效益。生产中,对风机水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变频器对风机泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497三相异步电动机经济运行强制性国家标准实施监督指南中的计算公式,即:也应先计算原系统节流调节时消耗的电能,再与系统变频调速后消耗的电能相减,这不正好是(2)式分子的表示式。因此,要准确地计算节能,还需使用(1)式计算系统节流调节时消耗的电能。2、恒转矩类负载的调速节能恒转矩负载变频调速一般都用于满足

33、工艺需要的调速,不用变频调速就得采用其他方式调速,如调压调速电磁调速绕线式电机转子串电阻调速等。由于这些调速是耗能的低效调速方式,使用高效调速方式的变频调速后,可节省因调速消耗的转差功率,节能率也是很可观的。3、电磁调速系统电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。转差离合器的本身的损耗是由主动部分的风阻磨擦损耗及从动部分的机械磨擦损所产生的。如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入输出功率可由下式计算:电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不变。损耗以有功

34、的形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上的风叶散发出去。由损耗功率公式(10)可以清楚看到,电磁调速电机的转速越低,浪费能源越大,然而生产机械的转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度的方法,是不耗能的高效调速方式,因此改用变频调速的方式会有非常好的节能效果,节省的能量直接可用(10)式计算。4、液力偶合器调速系统液力偶合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载。液力偶合器有调速型和限矩型之分,前者用于电

35、气传动的调速,后者用于电机的起动,系统中的液力偶合器在电机起动时起缓冲作用。由于液力偶合器的结构与电磁转差离合器类似,仿照电磁调速器效率的计算方法,可得:5、绕线式电机串电阻调速系统绕线式电机最常用改变转子电路的串接电阻的方法调速,随着转子串接电阻的增大,不但可以方便地改变电机的正向转速,在位能负载时,还可使电机反向旋转和改变电机的反向转速,因此这种调速方式在起重冶金行业应用较多。对于绕线式电机,无论在起动制动还是调速中,采用转子串电阻方式均会带来电能损耗。这种损耗随着转速的降低,转差率S的增大而增大,另外,随着串接电阻的增大,机械特性变软,难以达到调速的静态指标。在(14)式中,若S=0.5

36、,电磁功率有一半消耗在转子电阻上,调速系统效率低于50%。利用(14)式,只要知道电机运行的转速,就可方便地计算绕线式电机串接电阻调速消耗的电能,节能量的计算就非常简单了。当我们进行变频节能改造时,投入和收益是必须认真考虑的,收益就涉及到节能量的计算。变频器未投运之前,计算节能量是比较困难的,往往希望有一种简单实用的计算方法来进行节能的预测,有了以上的计算式计算节能量,投入和收益也就一目了然了。 三变频调速节能与系统功率因数的关系前已假定电动机系统在使用变频器调速前后的功率因数基本相同,这样在计算节能时可不考虑系统功率因数的影响。实际上,在变频器投入前后,其功率因数可能是不同的,因此,计算的节

37、能量是否考虑变频器调速前后的功率因数的变化呢?正弦电路中,功率因数是由电压U与电流I之间的相位角差决定的。在此情况下,功率因数常用表示。电路中的有功功率P就是其平均功率,即:用电度表进行计量检测实际的节能量时,电度表测量的就是电动机系统消耗的有功功率。若原电动机系统的功率因数较低,在使用变频器后以50Hz频率恒速运行,这时功率因数有所提高。功率因数提高后,电动机的运行状态并没有改变,电动机消耗的有功功率和无功功率也没有改变。变频器中的滤波电容与电动机进行无功能量交换,因此变频器实际输入电流减小,从而减小了电网与变频器之间的线损和供电变压器的铜耗,同时减小了无功电流上串电网。因此计算节能时,应考

38、虑提高功率因数后的节能。提高功率因数后,配电系统电流的下降率为:配电系统的电流下降率和配电系统的损耗下降率都是对单台电动机补偿前后电流和损耗而言,不是指配电系统电流和损耗的实际变化。配电系统的电流下降率和配电系统的损耗下降率都是对单台电动机补偿前后电流和损耗而言,不是指配电系统电流和损耗的实际变化。下面举一个典型的事例。例2:有一台压料机,电机功率200kW,安装在离配电房100多米的地方,计量仪表电压表电流表和有功电度表均在配电房。工频时电机空载工作电流192A;加载时,电机工作电压356V,电流231A。由于负载较轻,导致电动机的负载率和效率都较低。这时电动机的功率因数可由下式计算: 从本

39、例看,如果单纯提高功率因数,无须使用变频器,只需用电力电容进行就地补偿,但倘若还要满足工艺调速的需要,使用变频器调速节能是最佳的节能方法,这时的节能量应是线路上的能耗与变频调速节能之和。如果原电动机系统的功率因数较高,变频器投入后功率因数变化不大,可不考虑功率因数变化后线损的影响,就用本文中的(1)(14)进行计算节能。四、变频调速节能计算时需考虑变频器的效率GB12668定义变频器为转换电能并能改变频率的电能转换装置。能量转换过程中必然伴随着损耗。在变频器内部,逆变器功率器件的开关损耗最大,其余是电子元器件的热损耗和风机损耗,变频器的效率一般为95%-96%,因此在计算变频调速节能时要将变频

40、器的4%-5%的损耗考虑在内。如考虑了变频器的损耗本文例1中计算的节能率,就不是36%,而应该为31%-32%,这样的计算结果与实际节能率更为接近。五、结束语一般情况下,变频器用于50Hz调速控制。不管是平方转矩特性负载,还是恒转矩特性负载,调速才能节能,不调速在工频下运行是没有节能效果的。有时系统功率因数很低,使用变频器后也有节能效果,这不是变频调速节能,而是补偿功率因数带来的节能。本文所述的对变频调速节能计算方法有极好的实用性。1、根据已知风机、泵类在不同控制方式下的流量负载关系曲线和现场运行的负荷变化情况进行计算。 以一台IS150-125-400型离心泵为例,额定流200.16m3/h

41、,扬程50m;配备Y225M-4型电动机,额定功率45kW。泵在阀门调节和转速调节时的流量负载曲线。根据运行要求,水泵连续24小时运行,其中每天11小时运行在90%负荷, 13小时运行在50%负荷;全年运行时间在300天。则每年的节电量为: W1=4511(100%69%)300=46035kWh W2=4513(95%20%)300 =131625kWh W = W1W2=46035131625=177660kWh 字串4 每度电按0.5元计算,则每年可节约电费8.883万元。 2、根据风机、泵类平方转矩负载关系式:P / P0=(n / n0)3计算,式中为P0额定转速n0时的功率;P为转

42、速n时的功率。 以一台工业锅炉使用的22 kW鼓风机为例。运行工况仍以 24小时连续运行,其中每天11小时运行在90%负荷(频率按46Hz计算,挡板调节时电机功耗按98%计算),13小时运行在50%负荷(频率按20Hz计算,挡板调节时电机功耗按70%计算);全年运行时间在300天为计算依据。则变频调速时每年的节电量为: W1=22111(46/50)3300=16067kWhW2=22131(20/50)3300=80309kWh Wb = W1W2=1606780309=96376 kWh 挡板开度时的节电量为: W1=22(198%)11300=1452kWh W2=22(170%)113

43、00=21780kWh ? Wd = W1W2=145221780=23232 kWh 相比较节电量为:W= WbWd=9637623232=73144 kWh 每度电按0.5元计算,则采用变频调速每年可节约电费3.657万元。 某工厂离心式水泵参数为:离心泵型号6SA-8,额定流量53. 5 L/s,扬程50m;所配电机Y200L2-2型37 kW。对水泵进行阀门节流控制和电机调速控制情况下的实测数据记录如下: 字串2 流 量L/s 时 间(h) 消耗电网输出的电能(kWh) 阀门节流调节 电机变频调速 47 2 33.22=66.4 28.392=56.8 40 8 308=240 21.168=169.3 30 4 274=108 13.884=55.5 20 10 23.910=239 9.6710=96.7 合计 24 653.4 378.3 相比之下,在一天内变频调速可比阀门节流控制节省275.1 kWh的电量,节电率达42.1%。本文来自: 中国物资采购网 详细出处参考:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 合同协议

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁