《2022年全国高中联赛二试-苏教版.doc》由会员分享,可在线阅读,更多相关《2022年全国高中联赛二试-苏教版.doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021年全国高中数学联合竞赛加试试卷考试时间:上午10:0012:00一、此题总分值50分如图,在锐角ABC中,ABAC,AD是边BC上的高,P是线段AD内一点。过P作PEAC,垂足为E,做PFAB,垂足为F。O1、O2分别是BDF、CDE的外心。求证:O1、O2、E、F四点共圆的充要条件为P是ABC的垂心。二、此题总分值50分如图,在78的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线横、竖、斜方向上依次相连。问最少取出多少个棋子才可能满足要求?并说明理由。三、此题
2、总分值50分设集合P=1,2,3,4,5,对任意kP和正整数m,记f(m,k)=,其中a表示不大于a的最大整数。求证:对任意正整数n,存在kP和正整数m,使得f(m,k)=n。2021年全国高中数学联合竞赛加试试题参考答案一、此题总分值50分如图,在锐角ABC中,ABAC,AD是边BC上的高,P是线段AD内一点。过P作PEAC,垂足为E,作PFAB,垂足为F。O1、O2分别是BDF、CDE的外心。求证:O1、O2、E、F四点共圆的充要条件为P是ABC的垂心。证明:连结BP、CP、O1O2、EO2、EF、FO1。因为PDBC,PFAB,故B、D、P、F四点共圆,且BP为该圆的直径。又因为O1是B
3、DF的外心,故O1在BP上且是BP的中点。同理可证C、D、P、E四点共圆,且O2是的CP中点。综合以上知O1O2BC,所以PO2O1=PCB。因为AFAB=APAD=AEAC,所以B、C、E、F四点共圆。充分性:设P是ABC的垂心,由于PEAC,PFAB,所以B、O1、P、E四点共线,C、O2、P、F四点共线,FO2O1=FCB=FEB=FEO1,故O1、O2、E、F四点共圆。必要性:设O1、O2、E、F四点共圆,故O1O2E+EFO1=180。由于PO2O1=PCB=ACBACP,又因为O2是直角CEP的斜边中点,也就是CEP的外心,所以PO2E=2ACP。因为O1是直角BFP的斜边中点,也
4、就是BFP的外心,从而PFO1=90BFO1=90ABP。因为B、C、E、F四点共圆,所以AFE=ACB,PFE=90ACB。于是,由O1O2E+EFO1=180得(ACBACP)+2ACP+(90ABP)+(90ACB)=180,即ABP=ACP。又因为ABAC,ADBC,故BDCD。设B是点B关于直线AD的对称点,那么B在线段DC上且BD=BD。连结AB、PB。由对称性,有ABP=ABP,从而ABP=ACP,所以A、P、B、C四点共圆。由此可知PBB=CAP=90ACB。因为PBC=PBB,故PBC+ACB=(90ACB)+ACB=90,故直线BP和AC垂直。由题设P在边BC的高上,所以P
5、是ABC的垂心。二、此题总分值50分如图,在78的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线横、竖、斜方向上依次相连。问最少取出多少个棋子才可能满足要求?并说明理由。解:最少要取出11个棋子,才可能满足要求。其原因如下:如果一个方格在第i行第j列,那么记这个方格为(i,j)。第一步证明假设任取10个棋子,那么余下的棋子必有一个五子连珠,即五个棋子在一条直线横、竖、斜方向上依次相连。用反证法。假设可取出10个棋子,使余下的棋子没有一个五子连珠。如图1,在每一行的前五格
6、中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子。这样,10个被取出的棋子不会分布在右下角的阴影局部。同理,由对称性,也不会分布在其他角上的阴影局部。第1、2行必在每行取出一个,且只能分布在(1,4)、(1,5)、(2,4)、(2,5)这些方格。同理(6,4)、(6,5)、(7,4)、(7,5)这些方格上至少要取出2个棋子。在第1、2、3列,每列至少要取出一个棋子,分布在(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)所在区域,同理(3,6)、(3,7)、(3,8)、(4,6)、(4,7)、(4,8)、(5,6)、(5,7)、
7、(5,8)所在区域内至少取出3个棋子。这样,在这些区域内至少已取出了10个棋子。因此,在中心阴影区域内不能取出棋子。由于、这4个棋子至多被取出2个,从而,从斜的方向看必有五子连珠了。矛盾。图1图2第二步构造一种取法,共取走11个棋子,余下的棋子没有五子连珠。如图2,只要取出有标号位置的棋子,那么余下的棋子不可能五子连珠。综上所述,最少要取走11个棋子,才可能使得余下的棋子没有五子连珠。三、此题总分值50分设集合P=1,2,3,4,5,对任意kP和正整数m,记f(m,k)=,其中a表示不大于a的最大整数。求证:对任意正整数n,存在kP和正整数m,使得f(m,k)=n。证明:定义集合A=|mN*,kP,其中N*为正整数集。由于对任意k、iP且ki,是无理数,那么对任意的k1、k2P和正整数m1、m2,当且仅当m1=m2,k1=k2。由于A是一个无穷集,现将A中的元素按从小到大的顺序排成一个无穷数列。对于任意的正整数n,设此数列中第n项为。下面确定n与m、k的关系。假设,那么。由m1是正整数可知,对i=1,2,3,4,5,满足这个条件的m1的个数为。从而n=f(m,k)。因此对任意nN*,存在mN*,kP,使得f(m,k)=n。