河北大学大一下学期高等数学参考试题及复习资料.doc

上传人:叶*** 文档编号:42832336 上传时间:2022-09-16 格式:DOC 页数:8 大小:272.50KB
返回 下载 相关 举报
河北大学大一下学期高等数学参考试题及复习资料.doc_第1页
第1页 / 共8页
河北大学大一下学期高等数学参考试题及复习资料.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《河北大学大一下学期高等数学参考试题及复习资料.doc》由会员分享,可在线阅读,更多相关《河北大学大一下学期高等数学参考试题及复习资料.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数学一 一、单项选择题(63分)1、设直线,平面,那么及之间的夹角为(A )A.0 B.C. D. 2、二元函数在点处的两个偏导数都存在是在点处可微的(C )A.充分条件B.充分必要条件C.必要条件 D.既非充分又非必要条件3、设函数,则等于(C )A. B. C D. 4、二次积分交换次序后为(B )A. B. C. D. 5、若幂级数在处收敛,则该级数在处(DA )A.绝对收敛B.条件收敛 C.发散C.不能确定其敛散性6、设是方程的一个解,若,则在处(D ) A.某邻域内单调减少 B.取极小值 C.某邻域内单调增加 D.取极大值二、 填空题(73分)1、设(4,-3,4),(2,2,1),

2、则向量在上的投影2 2、设,那么 3、D为,时, 4、设是球面,则 5、函数展开为的幂级数为 6、 7、为通解的二阶线性常系数齐次微分方程为 三、计算题(47分)1、设,其中具有二阶导数,且其一阶导数不为 1,求。2、求过曲线上一点(1,2,0)的切平面方程。3、计算二重积分,其中 4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。5、求级数的和。四、综合题(10分) 曲线上任一点的切线在轴上的截距及法线在轴上的截距之比为3,求此曲线方程。五、证明题 (6分) 设收敛,证明级数绝对收敛。一,单项选择题(64分)1、直线一定 ( )A.过原点且垂直于x轴 B.过原点且平行于x轴 C

3、.不过原点,但垂直于x轴 D.不过原点,但平行于x轴 2、二元函数在点处连续 两个偏导数连续 可微 两个偏导数都存在那么下面关系正确的是( )A B. C. D. 3、设,则等于( )A.0B. C.D. 4、设,改变其积分次序,则I( )A. B. C. D. 5、若及都收敛,则( )A.条件收敛 B.绝对收敛 C.发散 C.不能确定其敛散性6、二元函数的极大值点为( )A.(1,0) B.(1,2) C.(-3,0) D.(-3,2)1、 A 2、 A 3、 C 4、 B 5、 B 6、 D 二、 填空题(84分)1、 2、 3、 4 4、 5、 6、 7、1 8、二、 填空题(84分)1

4、、过点(1,3,2)且及直线垂直的平面方程为 2、设,则3、设D:,则 4、设为球面,则 5、幂级数的和函数为 6、以为通解的二阶线性常系数齐次微分方为 7、若收敛,则 8、平面上的曲线绕轴旋转所得到的旋转面的方程为 三、计算题(47分) 1、设可微,由确定,求及。2、计算二重积分,其中。3、求幂级数的收敛半径及收敛域。4、求曲线积分,其中是由 所围成区域边界取顺时针方向。四、综合题(10分) 曲线上点的横坐标的平方是过点的切线及轴交点的纵坐标,求此曲线方程。五、证明题 (6分)设正项级数收敛,证明级数也收敛。一、单项选择题(63分)1、 A 2、 C 3、 C 4、 B 5、 A 6、 D

5、二、 填空题(73分)1、2 2、 3、 4 、 5、 6、0 7、 三、计算题(59分)1、解:令则, 故2、解:令 则 所以切平面的法向量为: 切平面方程为: 3、解:4、解:令 ,则 当,即在x轴上方时,线积分及路径无关,选择由(0,1)到(2,1)则5、解:令则即 令,则有四、综合题(10分) 解:设曲线上任一点为,则过的切线方程为: 在轴上的截距为 过的法线方程为: 在轴上的截距为 依题意有 由的任意性,即,得到这是一阶齐次微分方程,变形为:.(1)令则,代入(1)得: 分离变量得: 解得: 即 为所求的曲线方程。五、证明题 (6分)证明: 即 而及都收敛,由比较法及其性质知:收敛,

6、 故 绝对收敛。一、单项选择题(64分)1、 A 2、 A 3、 C 4、 B 5、 B 6、 D 二、 填空题(84分)1、 2、 3、 4 4、 5、 6、 7、1 8、 三、计算题(47分)1、解:令 2、解: 3、解:令对于, 当时发散 当时,也发散所以在时收敛,在该区间以外发散,即解得 故所求幂级数的收敛半径为2,收敛域为(0,4)4、解:令,则,由格林公式得到 4四、综合题(10分) 解: 过的切线方程为: 令X0,得 依题意有:即.(1)对应的齐次方程解为 令所求解为 将代入(1)得:故(1)的解为: 五、证明题 (6分)证明:由于收敛,所以也收敛,而 由比较法及收敛的性质得: 收敛。第 8 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁