《2017年新课标Ⅱ文数高考试题文档版(含答案).doc》由会员分享,可在线阅读,更多相关《2017年新课标Ⅱ文数高考试题文档版(含答案).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2017年普通高等学校招生全国统一考试文科数学试题一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设集合,则 A B C D2 A B C D 3函数的最小正周期为A B C D 4设非零向量,满足,则A B C D5若,则双曲线的离心率的取值范围是A B C D 6如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A B C D 7设满足约束条件则的最小值是A B C D 8函数的单调递增区间是A B C D 9甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成
2、绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A乙可以知道四人的成绩 B丁可以知道四人的成绩C乙、丁可以知道对方的成绩 D乙、丁可以知道自己的成绩10执行下面的程序框图,如果输入的,则输出的 A2 B3 C4 D511从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A B C D12过抛物线的焦点,且斜率为的直线交于点(在的轴上方),为的准线,点在上且,则到直线的距离为 A B C D二、填空题,本题共4小
3、题,每小题5分,共20分. 13函数的最大值为 . 14已知函数是定义在上的奇函数,当时,,则 .15长方体的长,宽,高分别为,其顶点都在球的球面上,则球的表面积为 .16的内角的对边分别为,若,则 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤17(12分)已知等差数列的前项和为,等比数列的前项和为,. (1)若,求的通项公式;(2)若,求.18(12分)如图,四棱锥中,侧面为等边三角形且垂直于底面,(1)证明:直线平面;(2)若的面积为,求四棱锥的体积.19(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(
4、单位:kg), 其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量及养殖方法有关:学科网箱产量50 kg箱产量50 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:P()0.050 0.010 0.001k3.841 6.635 10.82820(12分)设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F. 21(12分)设函数.(1)
5、讨论的单调性;2)当时,求的取值范围.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22选修44:坐标系及参数方程(10分) 在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)M为曲线上的动点,点P在线段OM上,且满足,求点P的轨迹的直角坐标方程;(2)设点A的极坐标为,点B在曲线上,求面积的最大值.23选修45:不等式选讲(10分)已知.证明:(1);(2).2017年普通高等学校招生全国统一考试文科数学试题答案一、选择题1.A 2.B 3.C 4.A 5.C 6.B 7.A 8.D 9.D 10.
6、B 11.D 12.C二、填空题13. 14. 12 15. 14 16. 三、解答题17.解:设的公差为d,的公比为q,则,.由得d+q=3. (1) 由得联立和解得(舍去),因此的通项公式(2) 由得.解得当时,由得,则.当时,由得,则.18.解:(1)在平面ABCD内,因为BAD=ABC=90,所以BCAD.又,故BC平面PAD.(2)去AD的中点M,学 科&网连结PM,CM,由及BCAD,ABC=90得四边形ABCM为正方形,则CMAD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD平面ABCD=AD,所以PMAD,PM底面ABCD,因为,所以PMCM.设BC=x,则CM=
7、x,CD=,PM=,PC=PD=2x.取CD的中点N,连结PN,则PNCD,所以因为PCD的面积为,所以解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=,所以四棱锥P-ABCD的体积.19.解:(1)旧养殖法的箱产量低于50kg的频率为 (0.012+0.014+0.024+0.034+0.040)5=0.62因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表箱产量50kg箱产量50kg旧养殖法6238新养殖法3466K2= 由于15.7056.635,故有99%的把握认为箱产量及养殖方法有关.(3)箱产量的频率分布直方图平均值(或中位数)在45kg
8、到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.20.解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.(3) 由题意知F(-1,0),设Q(-3,t),P(m,n),则由得-3m-+tn-=1,学&科网又由(1)知,故3+3m-tn=0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.21. 解(1)f (x)=(1-2x-x2)ex令f(x)=0得x=-1- ,x=-1+当x(-,-1-)时,f(x)0;当x(
9、-1-,+)时,f(x)0所以f(x)在(-,-1-),(-1+,+)单调递减,在(-1-,-1+)单调递增(2) f (x)=(1+x)(1-x)ex当a1时,设函数h(x)=(1-x)ex,h(x)= -xex0(x0),因此h(x)在0,+)单调递减,而h(0)=1,故h(x)1,所以f(x)=(x+1)h(x)x+1ax+1当0a1时,设函数g(x)=ex-x-1,g(x)=ex-10(x0),所以g(x)在在0,+)单调递增,而g(0)=0,故exx+1当0x1,取则当 综上,a的取值范围1,+) 22.解:(1)设P的极坐标为()(0),M的极坐标为()由题设知|OP|=,=.由|OP|=16得的极坐标方程因此的直角坐标方程为.(2)设点B的极坐标为 ().由题设知|OA|=2,于是OAB面积当时,学|科网S取得最大值.所以OAB面积的最大值为.23. 解(2)因为所以 ,因此第 6 页