《2018年人教版中考压轴题汇编《因动点产生的相似三角形问题》及答案.doc》由会员分享,可在线阅读,更多相关《2018年人教版中考压轴题汇编《因动点产生的相似三角形问题》及答案.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、因动点产生的相似三角形问题例1 2018上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k0)及直线yx2都经过点A(2, m) (1)求k及m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC及直线yx2平行交y轴于点C,联结AB、AC,求ABC的面积;(3)在(2)的条件下,设直线yx2及y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形及ACD相似,且相似比不为1,求点E的坐标图1 例2 2017年武汉市中考第24题如图1,RtABC中,ACB90,AC6 cm,BC8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动
2、,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0t2),连接PQ(1)若BPQ及ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQCP,求t的值;(3)试证明:PQ的中点在ABC的一条中位线上图1 图2例3 2017年苏州市中考第29题如图1,已知抛物线(b是实数且b2)及x轴的正半轴分别交于点A、B(点A位于点B是左侧),及y轴的正半轴交于点C(1)点B的坐标为_,点C的坐标为_(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;
3、如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得QCO、QOA和QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由图1例4 2018年黄冈市中考模拟第25题如图1,已知抛物线的方程C1: (m0)及x轴交于点B、C,及y轴交于点E,且点B在点C的左侧(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BHEH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形及BCE相
4、似?若存在,求m的值;若不存在,请说明理由图1例5 2017年义乌市中考第24题如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3)(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2)用含S的代数式表示x2x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度
5、沿着线段BC运动,动点Q从点D出发,以及点P相同的速度沿着线段DM运动P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形及直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由图1 图2例6 2017年临沂市中考第26题如图1,抛物线经过点A(4,0)、B(1,0)、C(0,2)三点(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PMx轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形及OAC相似?若存在,请求出符合条件的 点P的坐标;
6、若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得DCA的面积最大,求出点D的坐标图1因动点产生的相似三角形问题答案例1 2018上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k0)及直线yx2都经过点A(2, m) (1)求k及m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC及直线yx2平行交y轴于点C,联结AB、AC,求ABC的面积;(3)在(2)的条件下,设直线yx2及y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形及ACD相似,且相似比不为1,求点E的坐标图1 动感体验请打开几何画板文件名“15宝山嘉定24”,拖
7、动点E在射线CB上运动,可以体验到,ACE及ACD相似,存在两种情况思路点拨1直线AD/BC,及坐标轴的夹角为452求ABC的面积,一般用割补法3讨论ACE及ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程满分解答(1)将点A(2, m)代入yx2,得m4所以点A的坐标为(2, 4)将点A(2, 4)代入,得k8(2)将点B(n, 2),代入,得n4所以点B的坐标为(4, 2)图2设直线BC为yxb,代入点B(4, 2),得b2所以点C的坐标为(0,2)由A(2, 4) 、B(4, 2) 、C (0,2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距
8、离都是4所以AB,BC,ABC90 所以SABC8 (3)由A(2, 4) 、D(0, 2) 、C (0,2),得AD,AC由于DACACD45,ACEACD45,所以DACACE所以ACE及ACD相似,分两种情况:如图3,当时,CEAD此时ACDCAE,相似比为1如图4,当时,解得CE此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8)图3 图4考点伸展第(2)题我们在计算ABC的面积时,恰好ABC是直角三角形一般情况下,在坐标平面内计算图形的面积,用割补法如图5,作ABC的外接矩形HCNM,MN/y轴由S矩形HCNM24,SAHC6,SAMB2,SBCN8,得SABC8图5例
9、2 2017年武汉市中考第24题如图1,RtABC中,ACB90,AC6 cm,BC8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0t2),连接PQ(1)若BPQ及ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQCP,求t的值;(3)试证明:PQ的中点在ABC的一条中位线上图1 图2动感体验请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若BPQ可以两次成为直角三角形,及ABC相似当AQCP时,ACQCDPPQ的中点H在ABC的中位线EF上思路点拨1BPQ及
10、ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程2作PDBC于D,动点P、Q的速度,暗含了BDCQ3PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然满分解答(1)RtABC中,AC6,BC8,所以AB10BPQ及ABC相似,存在两种情况: 如果,那么解得t1 如果,那么解得图3 图4(2)作PDBC,垂足为D在RtBPD中,BP5t,cosB,所以BDBPcosB4t,PD3t当AQCP时,ACQCDP所以,即解得图5 图6(3)如图4,过PQ的中点H作BC的垂线,垂足为F,交AB于E由于H是PQ的中点,HF/PD,所以F是QD的中点又因为BDCQ4t,所以BF
11、CF因此F是BC的中点,E是AB的中点所以PQ的中点H在ABC的中位线EF上考点伸展本题情景下,如果以PQ为直径的H及ABC的边相切,求t的值如图7,当H及AB相切时,QPAB,就是,如图8,当H及BC相切时,PQBC,就是,t1如图9,当H及AC相切时,直径,半径等于FC4所以解得,或t0(如图10,但是及已知0t2矛盾)图7 图 8 图9 图10例3 2017年苏州市中考第29题如图1,已知抛物线(b是实数且b2)及x轴的正半轴分别交于点A、B(点A位于点B是左侧),及y轴的正半轴交于点C(1)点B的坐标为_,点C的坐标为_(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使
12、得四边形PCOB的面积等于2b,且PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得QCO、QOA和QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由图1动感体验请打开几何画板文件名“12苏州29”,拖动点B在x轴的正半轴上运动,可以体验到,点P到两坐标轴的距离相等,存在四边形PCOB的面积等于2b的时刻双击按钮“第(3)题”,拖动点B,可以体验到,存在OQAB的时刻,也存在OQAB的时刻思路点拨1第(2)题中,等腰直角三角形PBC暗示了点P到两
13、坐标轴的距离相等2联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示3第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A及x轴垂直的直线上满分解答(1)B的坐标为(b, 0),点C的坐标为(0, )(2)如图2,过点P作PDx轴,PEy轴,垂足分别为D、E,那么PDBPEC因此PDPE设点P的坐标为(x, x)如图3,联结OP所以S四边形PCOBSPCOSPBO2b解得所以点P的坐标为()图2 图3(3)由,得A(1, 0),OA1如图4,以OA、OC为邻边构造矩形OAQC,那么OQCQOA当,即时,BQAQOA所以解得所
14、以符合题意的点Q为()如图5,以OC为直径的圆及直线x1交于点Q,那么OQC90。因此OCQQOA当时,BQAQOA此时OQB90所以C、Q、B三点共线因此,即解得此时Q(1,4)图4 图5考点伸展第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而QOA及QOC是互余的,那么我们自然想到三个三角形都是直角三角形的情况这样,先根据QOA及QOC相似把点Q的位置确定下来,再根据两直角边对应成比例确定点B的位置如图中,圆及直线x1的另一个交点会不会是符合题意的点Q呢?如果符合题意的话,那么点B的位置距离点A很近,这及OB4OC矛盾例4 2018年黄冈市中考模拟第25题如图1,已
15、知抛物线的方程C1: (m0)及x轴交于点B、C,及y轴交于点E,且点B在点C的左侧(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BHEH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形及BCE相似?若存在,求m的值;若不存在,请说明理由图1动感体验请打开几何画板文件名“12黄冈25”,拖动点C在x轴正半轴上运动,观察左图,可以体验到,EC及BF保持平行,但是BFC在无限远处也不等于45观察右图,可以体验到,CBF保持45,存在BFCBCE的
16、时刻思路点拨1第(3)题是典型的“牛喝水”问题,当H落在线段EC上时,BHEH最小2第(4)题的解题策略是:先分两种情况画直线BF,作CBFEBC45,或者作BF/EC再用含m的式子表示点F的坐标然后根据夹角相等,两边对应成比例列关于m的方程满分解答(1)将M(2, 2)代入,得解得m4(2)当m4时,所以C(4, 0),E(0, 2)所以SBCE(3)如图2,抛物线的对称轴是直线x1,当H落在线段EC上时,BHEH最小设对称轴及x轴的交点为P,那么因此解得所以点H的坐标为(4)如图3,过点B作EC的平行线交抛物线于F,过点F作FFx轴于F由于BCEFBC,所以当,即时,BCEFBC设点F的坐
17、标为,由,得解得xm2所以F(m2, 0)由,得所以由,得整理,得016此方程无解图2 图3 图4如图4,作CBF45交抛物线于F,过点F作FFx轴于F,由于EBCCBF,所以,即时,BCEBFC在RtBFF中,由FFBF,得解得x2m所以F所以BF2m2,由,得解得综合、,符合题意的m为考点伸展第(4)题也可以这样求BF的长:在求得点F、F的坐标后,根据两点间的距离公式求BF的长例5 2017年义乌市中考第24题如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3)(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA
18、、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2)用含S的代数式表示x2x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以及点P相同的速度沿着线段DM运动P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形及直线PQ、直线AB、抛物线的对称轴围成的三
19、角形相似?若存在,请求出t的值;若不存在,请说明理由图1 图2动感体验请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图象,可以体验到,x2x1随S的增大而减小双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验到,如果GAFGQE,那么GAF及GQE相似思路点拨1第(2)题用含S的代数式表示x2x1,我们反其道而行之,用x1,x2表示S再注意平移过程中梯形的高保持不变,即y2y13通过代数变形就可以了2第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证3第(3)题的示意图,不变的关系是:直线AB及x
20、轴的夹角不变,直线AB及抛物线的对称轴的夹角不变变化的直线PQ的斜率,因此假设直线PQ及AB的交点G在x轴的下方,或者假设交点G在x轴的上方满分解答(1)抛物线的对称轴为直线,解析式为,顶点为M(1,)(2) 梯形O1A1B1C1的面积,由此得到由于,所以整理,得因此得到当S=36时, 解得 此时点A1的坐标为(6,3)(3)设直线AB及PQ交于点G,直线AB及抛物线的对称轴交于点E,直线PQ及x轴交于点F,那么要探求相似的GAF及GQE,有一个公共角G在GEQ中,GEQ是直线AB及抛物线对称轴的夹角,为定值在GAF中,GAF是直线AB及x轴的夹角,也为定值,而且GEQGAF因此只存在GQEG
21、AF的可能,GQEGAF这时GAFGQEPQD由于,所以解得图3 图4考点伸展第(3)题是否存在点G在x轴上方的情况?如图4,假如存在,说理过程相同,求得的t的值也是相同的事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3例6 2017年临沂市中考第26题如图1,抛物线经过点A(4,0)、B(1,0)、C(0,2)三点(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PMx轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形及OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得DCA的面积最大,求出点D
22、的坐标图1动感体验 请打开几何画板文件名“09临沂26”,拖动点P在抛物线上运动,可以体验到,PAM的形状在变化,分别双击按钮“P在B左侧”、“ P在x轴上方”和“P在A右侧”,可以显示PAM及OAC相似的三个情景双击按钮“第(3)题”, 拖动点D在x轴上方的抛物线上运动,观察DCA的形状和面积随D变化的图象,可以体验到,E是AC的中点时,DCA的面积最大思路点拨1已知抛物线及x轴的两个交点,用待定系数法求解析式时,设交点式比较简便2数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长3按照两条直角边对应成比例,分两种情况列方程4把DCA可以分割为共底的两个三角形,高的和等于OA满分解
23、答 (1)因为抛物线及x轴交于A(4,0)、B(1,0)两点,设抛物线的解析式为,代入点C的 坐标(0,2),解得所以抛物线的解析式为(2)设点P的坐标为如图2,当点P在x轴上方时,1x4,如果,那么解得不合题意如果,那么解得此时点P的坐标为(2,1)如图3,当点P在点A的右侧时,x4,解方程,得此时点P的坐标为解方程,得不合题意如图4,当点P在点B的左侧时,x1,解方程,得此时点P的坐标为解方程,得此时点P及点O重合,不合题意综上所述,符合条件的 点P的坐标为(2,1)或或图2 图3 图4(3)如图5,过点D作x轴的垂线交AC于E直线AC的解析式为设点D的横坐标为m,那么点D的坐标为,点E的坐标为所以因此当时,DCA的面积最大,此时点D的坐标为(2,1)图5 图6考点伸展第(3)题也可以这样解:如图6,过D点构造矩形OAMN,那么DCA的面积等于直角梯形CAMN的面积减去CDN和ADM的面积设点D的横坐标为(m,n),那么由于,所以第 10 页