《5.3.1-平行线的性质(教案).doc》由会员分享,可在线阅读,更多相关《5.3.1-平行线的性质(教案).doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、5.3 平行线的性质 平行线的性质【知识及技能】1.掌握平行线的性质定理.2.综合运用平行线的判定及性质进行简单的证明或计算.【过程及方法】1.经历猜想、实践、探究不难得到平行线的性质定理.在此基础上,结合前节的知识,进行简单的证明或计算.2.培养学生逆向思维的能力.【情感态度】培养学生逆向思维的能力.【教学重点】掌握平行线的性质定理,综合运用平行线的判定及性质进行简单的证明或计算.【教学难点】综合运用平行线的判定及性质进行简单的证明或计算.一、情境导入,初步认识问题 利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角各有
2、什么关系呢?二、思考探究,获取新知可将上述问题细化:1.如图,直线ab,直线a,b被直线c所截.(1)请填表:(2)如果a及b不平行,1及2还有以上关系吗?(3)通过(1)(2)的探究,你能得到什么结论?2.如图,直线ab,则3及2相等吗?为什么?3及4互补吗?思考1.你能根据以上探究,归纳出平行线的三个性质定理吗?2.平行线的性质定理及相应的判定定理是怎样的关系?【归纳结论】1.平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同
3、旁内角互补.简单说成:两直线平行,同旁内角互补.2.平行线的性质定理及相应的判定定理的已知部分和结论部分正好相反,它们是互逆关系.三、运用新知,深化理解1.如图,已知ABCD,ADBC,A及C有怎样的大小关系,为什么?2.已知ABCD,直线EF分别交AB,CD于M,N,MP平分EMA,NQ平分MNC,那么MPNQ,为什么?3.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则1+2=_.第3题图 第4题图4.如图,已知ABDE,ABC=80,CDE=140,则BCD=_.5.(江西中考)一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,
4、则ABC+BCD=_度.【教学说明】题1、2可让学生独立思考完成.题3、4可让同学们分组讨论、交流,有困难时,教师给予提示指导,如何作辅助线.题5及生活实际联系,让学生拓展思维.【答案】1.解:A=C,理由如下:ABCD,A及D为同旁内角,即A+D=180;ADBC,D及C为同旁内角,即D+C=180.所以A+D=D+C,即A=C.2.解:ABCD,EMA及MNC为同位角,即EMA=MNC.MP平分EMA,NQ平分MNC,则EMP=EMA,MNQ=MNC.所以EMP=MNQ,则MPNQ.3.90 解析:如图,经点F作AB的平行线,则1及3,2及4为内错角.根据平行线的性质得1=3,2=4,所以
5、1+2=3+4=EFH=90.4.40 解析:如图,过点C作GHDE.所以DCH+CDE=180(两直线平行,同旁内角互补).因为CDE=140(已知),所以DCH=180-CDE=40.又因为ABDE(已知),所以ABGH(如果两条直线都及第三条直线平行,那么这两条直线也互相平行).所以ABC=BCH(两直线平行,内错角相等).因为ABC=80(已知),所以BCH=80(等量代换).所以BCD=BCH-DCH=40.5.270 解析:如图,过B作BGCD,则CBG+BCD=180,ABG=90,于是可得ABC+BCD=90+180=270.四、师生互动,课堂小结平行线的性质:1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.在有关图形的计算和推理中,常见一类“折线”“拐角”型问题,解决这类问题的方法是:经过拐点作平行线,沟通已知角和未知角的联系,从而化“未知”为“可知”,这种方法应熟练掌握,如“”“”“”型要引起注意.1.布置作业:从教材“习题5.3”中选取.第 2 页