《二项分布及其应用》教案.docx

上传人:叶*** 文档编号:42827490 上传时间:2022-09-16 格式:DOCX 页数:8 大小:86.66KB
返回 下载 相关 举报
《二项分布及其应用》教案.docx_第1页
第1页 / 共8页
《二项分布及其应用》教案.docx_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《《二项分布及其应用》教案.docx》由会员分享,可在线阅读,更多相关《《二项分布及其应用》教案.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、教学过程二项分布及其应用适用学科数学适用年级高一适用区域新课标课时时长(分钟)60知 识 点二项分布正态曲线及其特点考情分析本节内容主要以解答题的形式及分布列、期望等结合,考查条件概率、相互独立事件的概率,n次独立重复试验及二项分布教学重点二项分布及正态分布曲线教学难点二项分布及正态分布曲线一、复习预习教师引导学生复习上节内容,并引入本节课程内容二、知识讲解考点1 条件概率(1)定义:对于任何两个事件A和B,在已知A发生的条件下,事件B发生的概率叫做条件概率,用符号来表示,其公式为(2)条件概率具有的性质:(1)非负性:;(2)可加性:如果B和C是两个互斥事件,则考点2 相互独立事件(1)定义

2、:对于事件A和B,若A的发生及B的发生互不影响,则称A,B为相互独立事件(2)相互独立事件的概率性质:若A及B相互独立,则如果事件相互独立,则这n个事件同时发生的概率等于每个事件发生概率的积,即若A及B相互独立,则A及,及B,及也都相互独立考点3 独立重复试验及二项分布独立重复试验:一般的,在相同条件下重复做的n次试验称为n次独立重复试验二项分布:一般的,在n次独立重复试验中,设事件A发生的次数X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为,此时称随机变量X服从二项分布,记作,并称p为成功概率。三、例题精析【例题1】【题干】如图,EFGH是以O为圆心

3、,半径为1的圆的内接正方形将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)_;(2)P(B|A)_.【答案】 【解析】圆的面积是,正方形的面积是2,扇形的面积是,根据几何概型的概率计算公式得P(A),根据条件概率的公式得P(B|A)【例题2】【题干】红队队员甲、乙、丙及蓝队队员A、B、C进行围棋比赛,甲对A、乙对B,丙对C各一盘已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立(1)求红队至少两名队员获胜的概率;(2)用表示红队队员获胜的总盘数,求的分布列和数学期望E()【

4、解析】(1)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则,分别表示甲不胜A、乙不胜B、丙不胜C的事件因为P(D)0.6, P(E)0.5,P(F)0.5,由对立事件的概率公式知P()0.4,P()0.5,P()0.5.红队至少两人获胜的事件有:DE,DF,EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为PP(DE)P(DF)P(EF)P(DEF)0.60.50.50.60.50.50.40.50.50.60.50.50.55.(2)由题意知可能的取值为0,1,2,3. 又由(1)知F,E,D是两两互斥事件,且各盘比赛的结果相互独立,因此

5、P(0)P()0.40.50.50.1,P(1)P(F)P(E)P(D)0.40.50.50.40.50.50.60.50.50.35,P(3)P(DEF)0.60.50.50.15.由对立事件的概率公式得P(2)1P(0)P(1)P(3)0.4.所以的分布列为:0123P0.10.350.40.15因此E()00.110.3520.430.151.6.【例题3】【题干】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的

6、,且各人的选择相互之间没有影响(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列【解析】(1)任选1名下岗人员,记“该人参加过财会培训”为事件A,“该人参加过计算机培训”为事件B,由题设知,事件A及B相互独立,且P(A)0.6,P(B)0.75.所以,该下岗人员没有参加过培训的概率是P( )P()P()(10.6)(10.75)0.1.该人参加过培训的概率为10.10.9.(2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数X服从二项分布XB(3,0.9),P(Xk)C0.9k0.13k,k0,1,2,3,X的分布列是X

7、0123P0.0010.0270.2430.729【例题4】【题干】某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率【解析】设“5次预报中恰有2次准确”为事件A,“5次预报中至少有2次准确”为事件B,“5次预报恰有2次准确,且其中第3次预报准确”为事件C. (1)P(A)C23100.05.(2)P(B)1C05C40.99.(3)P(C)C30.02.四、课堂运用【基础】1 投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰

8、子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A. B. C. D.解析 本题涉及古典概型概率的计算本知识点在考纲中为B级要求由题意得P(A),P(B),则事件A,B至少有一件发生的概率是1P()P()1.答案 C 2一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2.则()Ap1p2 Bp1p2 D以上三种情况都有可能解析p111011015,p21515则p1300级别1212状况优良轻微污染轻度污染中度

9、污染中度重污染重度污染对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间0,50,(50,100,(100,150,(150,200,(200,250,(250,300进行分组,得到频率分布直方图如下图(1)求直方图中x的值;(2)计算一年中空气质量为良或轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率(结果用分数表示已知5778 125,27128,365735)解析(1)x.(2)50365219.(3)每天空气质量为良或轻微污染的概率为P,则P,设X是一周内空气质量为良或轻微污染的天数则XB,P(X0)C7,P(X1)C6,P17.第 8 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁