2018年上海市春考数学试卷(含答案).docx

上传人:叶*** 文档编号:42822272 上传时间:2022-09-16 格式:DOCX 页数:5 大小:251.71KB
返回 下载 相关 举报
2018年上海市春考数学试卷(含答案).docx_第1页
第1页 / 共5页
2018年上海市春考数学试卷(含答案).docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《2018年上海市春考数学试卷(含答案).docx》由会员分享,可在线阅读,更多相关《2018年上海市春考数学试卷(含答案).docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2018年上海市普通高校春季招生统一文化考试数学试卷一、填空题(54分)1、不等式的解集为_;2、计算:;3、设集合,则;4、若复数(是虚数单位),则;5、已知是等差数列,若,则;6、已知平面上动点到两个定点和的距离之和等于4,则动点的轨迹方程为_;7、如图,在长方体中,是的中点,则三棱锥的体积为_; 第7题图 第12题图8、某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为_(结果用数值表示)。9、设,若及的二项展开式中的常数项相等,则;10、设,若是关于的方程的一个虚根,则的取值范围是_;11、设,函数,若函数及的图像

2、有且仅有两个不同的公共点,则的取值范围是_;12、如图,在正方形的边长为米,圆的半径为1米,圆心是正方形的中心,点、分别在线段、上,若线段及圆有公共点,则称点在点的“盲区”中,已知点以1.5米/秒的速度从出发向移动,同时,点以1米/秒的速度从出发向移动,则在点从移动到的过程中,点在点的盲区中的时长均为_秒(精确到0.1).二选择题(20分)13. 下列函数中,为偶函数的是( )A B C D14. 如图,在直三棱柱的棱所在的直线中,及直线异面的直线的条数为( )A B C D 15. 若数列的前项和,“是递增数列”是“是递增数列”的( )A充分不必要条件 B必要不充分条件 C充要条件 D即不充

3、分也不必要条件16、已知、是平面内两个定点,且,该平面上的动线段的两个端点、满足:,则动线段所围成的面积为( )A、50 B、60 C、72 D、108三、解答题(14+14+14+16+18=76分)17、已知(1) .若,且,求的值;(2) .求函数的最小值;18、已知,双曲线(1) .若点在上,求的焦点坐标;(2) .若,直线及相交于两点,若线段中点的横坐标为1,求的值;19.利用“平行及圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理;某公司用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2投影出的抛物线的平面图,图3是一个射灯投影的直观图,在图2及图3中,点

4、、在抛物线上,是抛物线的对称轴,于,米,米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知平行于圆锥的母线,、是圆锥底面的直径,求圆锥的母线及轴的夹角的大小(精确到).20.设,函数(1) .若,求的反函数(2) 求函数的最大值,(用表示)(3) 设,若对任意恒成立,求的取值范围?21.若是递增数列,数列满足:对任意,使得,则称是的“分隔数列”(1) 设,证明:数列是的分隔数列;(2) 设是的前项和,判断数列是否是数列的分隔数列,并说明理由;(3) 设是的前项和,若数列是的分隔数列,求实数的取值范围?2018年上海市普通高校春季招生统一文化考试数学试卷参考答案:一、填空题:1、;2、;

5、3、;4、;5、;6、;7、;8、;9、;10、;11、;12、;二、选择题:13、A;14、C;15、D;16、B;三、解答题:17、(1);(2);18、(1);(2);19、(1);(2);20、解析:(1);(2),设,则,因为,所以,当且仅当时取等号,所以,即;(3),设,因为,所以,则,若,1当时,即,单调递减,所以,则,且,故满足,符合题意;2当时,即,则,则,因为,故不符合题意,舍去;综上:。21、解析(1)依题意得,因为,于是,可得,故存在这样的,使得,所以数列是的分隔数列,得证;(2),又因为是的前项和,所以,假设数列是否是数列的分隔数列,则必定存在,使得,代入不并化简得:所以,又因为,所以,对于任意的,三个方程都不能确保一直偶整数解,故不符合定义,所以数列不是数列的分隔数列;另解:举出反例即可!1当时,存在;2当时,存在;3当时,存在;4当时,不存在;综上,数列不是数列的分隔数列;(3)因为是递增数列,所以,或;当时,则,不符合数列是的分隔数列,故舍去。当时,因为,代入并化简得:令,则,对任意的恒成立,则,而(恒成立),故数列是的分隔数列,且此时;当时,因为,代入并化简得:,因为单调递减,而,此时不存在,故这种情况,舍去;综上,或。第 5 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁