大学课件:生物化学之生物氧化2.ppt

上传人:小****库 文档编号:4261541 上传时间:2021-07-09 格式:PPT 页数:75 大小:2.08MB
返回 下载 相关 举报
大学课件:生物化学之生物氧化2.ppt_第1页
第1页 / 共75页
大学课件:生物化学之生物氧化2.ppt_第2页
第2页 / 共75页
亲,该文档总共75页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《大学课件:生物化学之生物氧化2.ppt》由会员分享,可在线阅读,更多相关《大学课件:生物化学之生物氧化2.ppt(75页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第6章,生物氧化,Biological Oxidation,ATP生成方式,底物水平磷酸化 底物脱氢或脱水反应,生成底物分子的高能键, 底物的高能磷酸键直接转移给ADP生成ATP 使 ADP(GDP)磷酸化生成ATP(GTP)的过程。 不经呼吸链传递,2-磷酸甘油酸,GDP GTP,NAD+ NADH+H+,ATP生成方式,底物水平磷酸化 底物脱氢或脱水反应,生成底物分子的高能键, 底物的高能磷酸键直接转移给ADP生成ATP 使 ADP(GDP)磷酸化生成ATP(GTP)的过程。 不经电传递,ATP生成方式,氧化磷酸化,物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体内分解时逐步

2、释放能量,最终生成CO2 和 H2O的过程。,CO2和H2O,O2,能量,ADP+Pi,ATP,热能,生物氧化的概念,生物氧化与体外氧化之相同点,生物氧化中物质的氧化方式有加氧、脱氢、失电子,遵循氧化还原反应的一般规律。 物质在体内外氧化时所消耗的氧量、最终产物(CO2,H2O)和释放能量均相同。,反应环境温和,酶促反应逐步进行,能量逐步释放,能量容易捕获,ATP生成效率高。 通过加水脱氢反应使物质能间接获得氧,并增加脱氢的机会;脱下的氢与氧结合产生H2O,有机酸脱羧产生CO2。,生物氧化与体外氧化之不同点,生物氧化,体外氧化,能量突然释放。 物质中的碳和氢直接同氧结合生成CO2和H2O 。,

3、乙酰CoA,TAC,2H,呼吸链,H2O,ADP+Pi,ATP,CO2,生物氧化的一般过程,第一节 生成ATP的氧化磷酸化体系,The Oxidative Phosphorylation System with ATP Producing,指线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过链锁的氧化还原将代谢物脱下的氢和电子最终传递给氧生成水。这一系列酶和辅酶称为呼吸链(respiratory chain)又称电子传递链(electron transfer chain)。,一、氧化呼吸链,定义,递氢体和电子传递体(2H 2H+ + 2e),组成,氧化呼吸链,泛醌不包含在上述

4、四种复合体中。,(一)氧化呼吸链由4种具有传递电子能力的复合体组成,复合体又称NADH-泛醌还原酶。 复合体电子传递:NADHFMNFe-S CoQ Fe-S CoQ 每传递2个电子可将4个H+从内膜基质侧泵到胞浆侧,复合体有质子泵功能。,1、复合体作用是将NADH+H+中的电子传递给泛醌(ubiquinone),NAD+和NADP+的结构,R=H: NAD+; R=H2PO3: NADP+,NAD+(NADP+)和NADH(NADPH)相互转变,氧化还原反应时变化发生在五价氮和三价氮之间。,FMN结构中含核黄素,发挥功能的部位是异咯嗪环,氧化还原反应时不稳定中间产物是FMN。在可逆的氧化还原

5、反应中显示3种分子状态,属于单、双电子传递体。,FAD,铁硫蛋白中辅基铁硫中心(Fe-S)含有等量铁原子和硫原子,其中一个铁原子可进行Fe2+ Fe3+e 反应传递电子。属于单电子传递体。, 表示无机硫,泛醌(辅酶Q, CoQ, Q)由多个异戊二烯连接形成较长的疏水侧链(人CoQ10),氧化还原反应时可生成中间产物半醌型泛醌。内膜中可移动电子载体,在各复合体间募集并穿梭传递还原当量和电子。,复合体是三羧酸循环中的琥珀酸脱氢酶,又称琥珀酸-泛醌还原酶。 电子传递:琥珀酸FAD几种Fe-S CoQ 复合体没有H+泵的功能。,2、复合体功能是将电子从琥珀酸传递到泛醌。,3、复合体功能是将电子从还原型

6、泛醌传递给细胞色素c。,复合体又叫泛醌-细胞色素C还原酶,细胞色素b-c1复合体,含有细胞色素b(b562, b566)、细胞色素c1和一种可移动的铁硫蛋白(Rieske protein)。 泛醌从复合体、募集还原当量和电子并穿梭传递到复合体。 电子传递过程:CoQH2Cyt b Fe-S Cytc1Cytc,细胞色素(cytochrome, Cyt),细胞色素是一类以铁卟啉为辅基的催化电子传递的酶类,根据它们吸收光谱不同而分类。,复合体也有质子泵作用。 Cyt c是呼吸链唯一水溶性球状蛋白,不包含在复合体中。将获得的电子传递到复合体。,复合体又称细胞色素C氧化酶(cytochrome c o

7、xidase)。 电子传递:Cyt cCuACyt aCyt a3O2 Cyt a3CuB形成活性双核中心,将电子传递给O2。每2个电子传递过程使2个H+跨内膜向胞浆侧转移 。 复合体也有质子泵作用。,4、复合体将电子从细胞色素C传递给氧,复合体的电子传递过程,标准氧化还原电位 拆开和重组 特异抑制剂阻断 还原状态呼吸链缓慢给氧,(二)氧化呼吸链组分按氧化还原电位由低到高的顺序排列,由以下实验确定:,氧化呼吸链,FMN,Fe-S 复合体,FAD, Fe-S,Cytb 复合体,Cytb, Fe-S,Cytc1 复合体,Cytaa3,Cu 复合体,1、NADH氧化呼吸链 NADH 复合体Q 复合体

8、Cyt c 复合体O2 2、琥珀酸氧化呼吸链 琥珀酸 复合体 Q 复合体Cyt c 复合体O2,二、氧化磷酸化将氧化呼吸链释能与ADP磷酸化生成ATP偶联,氧化磷酸化 (oxidative phosphorylation)是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。,ATP生成方式,底物水平磷酸化(substrate level phosphorylation)与脱氢或脱水反应偶联,生成底物分子的高能键,使ADP(GDP)磷酸化生成ATP(GTP)的过程。不经电子传递。,(一)氧化磷酸化偶联部位在复合体、内,根据P/O比值 自由能变化: G=-nFE,氧化磷酸化偶

9、联部位:复合体、,(二)氧化磷酸化偶联机制是产生跨线粒体内膜的质子梯度,化学渗透假说(chemiosmotic hypothesis),电子经呼吸链传递时,可将质子(H+)从线粒体内膜的基质侧泵到内膜胞浆侧,产生膜内外质子电化学梯度储存能量。当质子顺浓度梯度回流时驱动ADP与Pi生成ATP。,氧化磷酸化依赖于完整封闭的线粒体内膜; 线粒体内膜对H+、OH、K、Cl离子是不通透的; 电子传递链可驱动质子移出线粒体,形成可测定的跨内膜电化学梯度; 增加线粒体内膜外侧酸性可导致ATP合成,而线粒体内膜加入使质子通过物质可减少内膜质子梯度,结果电子虽可以传递,但ATP生成减少。,化学渗透假说已经得到广

10、泛的实验支持。,化学渗透假说简单示意图,胞液侧,基质侧,电子传递过程复合体 (4H+) 、 (4 H+)和 (2H+)有质子泵功能。,氧化磷酸化偶联部位,(三)质子顺梯度回流释放能量被ATP合酶利用催化ATP合成,F1:亲水部分 (动物:33亚基复合体,OSCP、IF1 亚基),线粒体内膜的基质侧颗粒状突起,催化ATP合成。 F0:疏水部分(ab2c912亚基,动物还有其他辅助亚基),镶嵌在线粒体内膜中,形成跨内膜质子通道 。,ATP合酶结构组成,P/O 比值,指氧化磷酸化过程中,每消耗1/2摩尔O2所生成ATP的摩尔数(或一对电子通过氧化呼吸链传递给氧所生成ATP分子数)。,三、氧化磷酸化作

11、用可受某些内外源因素影响,(一)有3类氧化磷酸化抑制剂,1、呼吸链抑制剂阻断氧化磷酸化的电子传递过程,复合体抑制剂:鱼藤酮(rotenone)、粉蝶霉素A(piericidin A)及异戊巴比妥(amobarbital)等阻断传递电子到泛醌 。 复合体的抑制剂:萎锈灵(carboxin)。,复合体抑制剂:抗霉素A(antimycin A)阻断Cyt bH传递电子到泛醌(QN) 复合体 抑制剂:CN、N3紧密结合中氧化型Cyt a3,阻断电子由Cyt a到CuB- Cyt a3间传递。CO与还原型Cyt a3结合,阻断电子传递给O2。,鱼藤酮 粉蝶霉素A 异戊巴比妥,抗霉素A,CO、CN-、 N

12、3-及H2S,各种呼吸链抑制剂的阻断位点,2、解偶联剂破坏电子传递建立的跨膜质子电化学梯度,解偶联剂(uncoupler)可使氧化与磷酸化的偶联相互分离,基本作用机制是破坏电子传递过程建立的跨内膜的质子电化学梯度,使电化学梯度储存的能量以热能形式释放,ATP的生成受到抑制。 如:二硝基苯酚(dinitrophenol, DNP) ;解偶联蛋白(uncoupling protein,UCP1)。,解偶联蛋白作用机制(棕色脂肪组织线粒体),Q,胞液侧,基质侧,解偶联 蛋白,新生儿硬肿症 (新生儿寒冷损伤综合症 ),3、ATP合酶抑制剂同时抑制电子传递和ATP的生成,这类抑制剂对电子传递及ADP磷酸

13、化均有抑制作用。例如寡霉素(oligomycin)可结合F0单位,阻断质子从F0质子半通道回流,抑制ATP合酶活性。由于线粒体内膜两侧质子电化学梯度增高影响呼吸链质子泵的功能,继而抑制电子传递。,寡霉素(oligomycin),寡霉素,ATP合酶结构模式图,抑制ATP生成 可阻止质子回流,,(二)ADP 是调节正常人体氧化磷酸化速率的主要因素。,呼吸控制率(respiratory control ratio, RCR),ADP/ATP:氧化磷酸化 ADP/ATP:氧化磷酸化,Na+-K+-ATP酶生成,ATP水解,氧化磷酸化,ATP合成,耗氧量和产热量,甲状腺素,(三)甲状腺激素刺激机体耗氧量

14、和产热同时增加。,Na+,K+ATP酶,解偶联蛋白基因表达增加,(四)线粒体DNA突变可影响机体氧化磷 酸化功能。,mtDNA编码呼吸链复合体的多肽链及蛋白质,mtDNA突变,影响氧化磷酸化,ATP生成减少,mtDNA病,聋、盲、痴呆、肌无力、糖尿病,四、ATP在能量的生成、利用、转移和储存中起核心作用,高能磷酸键 水解时释放的能量大于21kJ/mol的磷酸酯键,常表示为P。 高能磷酸化合物 含有高能磷酸键的化合物,一些重要有机磷酸化合物水解释放的标准自由能,肌酸激酶的作用,磷酸肌酸作为肌肉和脑组织中能量的一种贮存形式。,ATP的生成和利用,ATP,ADP,机械能(肌肉收缩) 渗透能(物质主动

15、转运) 化学能(合成代谢) 电能(生物电) 热能(维持体温),生物体内能量的储存和利用都以ATP为中心。,五、线粒体内膜对各种物质进行选择性转运,线粒体外膜通透性高,线粒体对物质通过的选择性主要依赖于内膜中不同转运蛋白(transporter)对各种物质的转运。,线粒体内膜的某些转运蛋白对代谢物的转运,(一)胞浆中NADH通过穿梭机制进入线粒体氧化呼吸链,胞浆中NADH必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化。,-磷酸甘油穿梭(-glycerophosphate shuttle) 苹果酸-天冬氨酸穿梭 (malate-asparate shuttle),转运机制:,1、-磷酸甘油穿梭主要存在于脑和骨骼肌中,NADH+H+,FADH2,NAD+,FAD,线粒体 内膜,线粒体 外膜,膜间隙,线粒体 基质,磷酸二羟丙酮,-磷酸甘油,2、苹果酸-天冬氨酸穿梭主要存在于肝和心肌中,呼吸链概念,组成,传递顺序,偶联部位 影响氧化磷酸化的因素(抑制剂) 机体产生ATP的主要方式 氧化磷酸化的概念,PO概念 两条穿梭途径名称,生成ATP的个数,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁