《淮南车用铝铸件项目商业计划书_模板范文.docx》由会员分享,可在线阅读,更多相关《淮南车用铝铸件项目商业计划书_模板范文.docx(138页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、泓域咨询/淮南车用铝铸件项目商业计划书淮南车用铝铸件项目商业计划书xx有限责任公司报告说明双碳调控下再生铝产量持续提升,有望带动行业整体成本下降。原材料方面,目前电解铝与再生铝的市场占比约为4:1。电解铝又称原铝,由铝土矿中的氧化铝与用烧碱冶炼而成的预焙阳极一起电解而成;再生铝是将工业生产与社会消费中的可回收废铝材重新熔炼成型。生产电解铝消耗的电力资源较大,在双碳背景下面临限产调控的趋势。而每利用一吨的再生铝合金比电解铝可降低二氧化碳、二氧化硫排放11吨,节约用电1.3万度,能源消耗小且环境友好;此外,再生铝价格低于电解铝800-1000元/吨,具有成本优势,再生铝市场迎来机遇。一般而言,原铝
2、相对比再生铝,强度、硬度、韧性、抗氧化性能更强,使用寿命更长,因此对于硬度、抗撞击能力有要求的部件(如车身结构件)只能用原铝,不能用回收铝;但随着技术的不断进步,再生铝的质量已经越来越接近于原生铝。未来预计再生铝对电解铝的替代趋势将会愈发显著,助力上游原材料降本。下游深加工应用广泛,交通部门(含汽车)用量最多。铝合金深加工的下游产业覆盖广泛,包括建筑建材、交通运输(航空、汽车等)、电线电缆与食品医药包装等。根据CMGroup报告的2018年各部门用铝统计,交通和建筑部门占比最高,分别为29%、26%。其中,交通板块对铝的需求占比将会持续保持,且总量不断增加,因而车用铝合金制造厂商的订单量受下游
3、整车厂影响较大。此外,新能源单车用铝量普遍高于传统燃油车近42%,随着新能源汽车渗透率的提高,车用铝合金的市场规模将会不断扩大。汽车铝合金应用广泛,汽车铝铸件占比超70%车用铝合金覆盖范围广泛,单车用铝量持续提升根据谨慎财务估算,项目总投资19787.39万元,其中:建设投资15266.53万元,占项目总投资的77.15%;建设期利息191.82万元,占项目总投资的0.97%;流动资金4329.04万元,占项目总投资的21.88%。项目正常运营每年营业收入39100.00万元,综合总成本费用30818.69万元,净利润6058.58万元,财务内部收益率23.98%,财务净现值10582.06万
4、元,全部投资回收期5.32年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。综上所述,该项目属于国家鼓励支持的项目,项目的经济和社会效益客观,项目的投产将改善优化当地产业结构,实现高质量发展的目标。本报告为模板参考范文,不作为投资建议,仅供参考。报告产业背景、市场分析、技术方案、风险评估等内容基于公开信息;项目建设方案、投资估算、经济效益分析等内容基于行业研究模型。本报告可用于学习交流或模板参考应用。目录第一章 项目基本情况10一、 项目提出的理由10二、 项目概述10三、 项目总投资及资金构成12四、 资金筹措方案13五、 项目预期经济效益规划目标13六、 项目建设进度规
5、划14七、 研究结论14八、 主要经济指标一览表14主要经济指标一览表14第二章 市场预测16一、 一体化压铸将全面提高生产环节的资金与技术壁垒16二、 铝合金加工分为铸造和形变,压铸工艺最为成熟与高效25第三章 背景、必要性分析28一、 市场测算:新能源助力全球铝铸件需求加速,预计2025年市场规模将超6600亿元28二、 轻量化技术多点突破,铝压铸工艺综合占优29三、 汽车轻量化势在必行,铝压铸工艺优势显著30四、 坚持创新驱动发展,积极培育经济增长新动力33五、 项目实施的必要性37第四章 项目建设单位说明38一、 公司基本信息38二、 公司简介38三、 公司竞争优势39四、 公司主要财
6、务数据41公司合并资产负债表主要数据41公司合并利润表主要数据41五、 核心人员介绍42六、 经营宗旨43七、 公司发展规划43第五章 运营管理模式46一、 公司经营宗旨46二、 公司的目标、主要职责46三、 各部门职责及权限47四、 财务会计制度51第六章 发展规划分析58一、 公司发展规划58二、 保障措施59第七章 法人治理62一、 股东权利及义务62二、 董事64三、 高级管理人员68四、 监事70第八章 创新驱动73一、 企业技术研发分析73二、 项目技术工艺分析75三、 质量管理76四、 创新发展总结77第九章 SWOT分析78一、 优势分析(S)78二、 劣势分析(W)80三、
7、机会分析(O)80四、 威胁分析(T)82第十章 项目实施进度计划87一、 项目进度安排87项目实施进度计划一览表87二、 项目实施保障措施88第十一章 风险防范89一、 项目风险分析89二、 项目风险对策91第十二章 建设规模与产品方案94一、 建设规模及主要建设内容94二、 产品规划方案及生产纲领94产品规划方案一览表95第十三章 建筑技术方案说明97一、 项目工程设计总体要求97二、 建设方案97三、 建筑工程建设指标98建筑工程投资一览表99第十四章 项目投资分析101一、 编制说明101二、 建设投资101建筑工程投资一览表102主要设备购置一览表103建设投资估算表104三、 建设
8、期利息105建设期利息估算表105固定资产投资估算表106四、 流动资金107流动资金估算表108五、 项目总投资109总投资及构成一览表109六、 资金筹措与投资计划110项目投资计划与资金筹措一览表110第十五章 经济效益112一、 经济评价财务测算112营业收入、税金及附加和增值税估算表112综合总成本费用估算表113固定资产折旧费估算表114无形资产和其他资产摊销估算表115利润及利润分配表117二、 项目盈利能力分析117项目投资现金流量表119三、 偿债能力分析120借款还本付息计划表121第十六章 项目总结分析123第十七章 附表附录125营业收入、税金及附加和增值税估算表125
9、综合总成本费用估算表125固定资产折旧费估算表126无形资产和其他资产摊销估算表127利润及利润分配表128项目投资现金流量表129借款还本付息计划表130建设投资估算表131建设投资估算表131建设期利息估算表132固定资产投资估算表133流动资金估算表134总投资及构成一览表135项目投资计划与资金筹措一览表136第一章 项目基本情况一、 项目提出的理由大尺寸叠加复杂结构提高流动性要求,降低流长放大裕度抵消远端性能下降。一体化压铸的车身件通常具有尺寸大和结构复杂等特征,因此压铸过程中铝液在模腔内的流长较长,需要原材料具有良好的流动性。同时,一体化压铸件需要满足车身不同部位对受力、强度以及韧
10、性的不同要求。强度相关的结构件,抗拉强度通常210mpa,伸长率7。韧性相关的结构件的抗拉强度通常180mpa,伸长率10;然而随着流长增加,原材料充填远端的力学性能会有所下降,甚至与充填近端产生巨大差异,难以保证产品力学性能上的一致性。当前一方面可以在不改变产品结构外形的基础上,可以通过降低流长来大幅度提高充填末端的力学性能。从材料改良的角度,可以通过不断提高原材料的基础力学性能来抵消充填远端在力学性能上下降,通过放大原材料的性能裕度来满足一体化压铸产品的尺寸越来越大的要求。二、 项目概述(一)项目基本情况1、项目名称:淮南车用铝铸件项目2、承办单位名称:xx有限责任公司3、项目性质:扩建4
11、、项目建设地点:xx5、项目联系人:沈xx(二)主办单位基本情况公司在发展中始终坚持以创新为源动力,不断投入巨资引入先进研发设备,更新思想观念,依托优秀的人才、完善的信息、现代科技技术等优势,不断加大新产品的研发力度,以实现公司的永续经营和品牌发展。公司坚持提升企业素质,即“企业管理水平进一步提高,人力资源结构进一步优化,人员素质进一步提升,安全生产意识和社会责任意识进一步增强,诚信经营水平进一步提高”,培育一批具有工匠精神的高素质企业员工,企业品牌影响力不断提升。公司不断推动企业品牌建设,实施品牌战略,增强品牌意识,提升品牌管理能力,实现从产品服务经营向品牌经营转变。公司积极申报注册国家及本
12、区域著名商标等,加强品牌策划与设计,丰富品牌内涵,不断提高自主品牌产品和服务市场份额。推进区域品牌建设,提高区域内企业影响力。公司全面推行“政府、市场、投资、消费、经营、企业”六位一体合作共赢的市场战略,以高度的社会责任积极响应政府城市发展号召,融入各级城市的建设与发展,在商业模式思路上领先业界,对服务区域经济与社会发展做出了突出贡献。 (三)项目建设选址及用地规模本期项目选址位于xx,占地面积约47.00亩。项目拟定建设区域地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,非常适宜本期项目建设。在发展平衡性、充分性、可持续性不断提升的基础上,地区生产总值年均增速达到全省平均水
13、平,到2025年地区生产总值确保实现1800亿元,力争达到2000亿元。产业结构进一步优化,非煤产业加快发展,高新战新产业贡献不断增强,农业现代化建设扎实推进。园区建设取得突破性进展,民营经济发展活力明显增强。创新型人才队伍建设、体制机制改革、重要平台打造、创新主体培育等取得重大突破,国家智慧城市和省级创新型城市试点建设取得重大进展,创业创新生态系统不断完善,自主创新能力显著增强,基本形成以创新为支撑的经济发展方式。(四)产品规划方案根据项目建设规划,达产年产品规划设计方案为:xx吨车用铝铸件/年。三、 项目总投资及资金构成本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项
14、目总投资19787.39万元,其中:建设投资15266.53万元,占项目总投资的77.15%;建设期利息191.82万元,占项目总投资的0.97%;流动资金4329.04万元,占项目总投资的21.88%。四、 资金筹措方案(一)项目资本金筹措方案项目总投资19787.39万元,根据资金筹措方案,xx有限责任公司计划自筹资金(资本金)11958.06万元。(二)申请银行借款方案根据谨慎财务测算,本期工程项目申请银行借款总额7829.33万元。五、 项目预期经济效益规划目标1、项目达产年预期营业收入(SP):39100.00万元。2、年综合总成本费用(TC):30818.69万元。3、项目达产年净
15、利润(NP):6058.58万元。4、财务内部收益率(FIRR):23.98%。5、全部投资回收期(Pt):5.32年(含建设期12个月)。6、达产年盈亏平衡点(BEP):13385.34万元(产值)。六、 项目建设进度规划项目计划从可行性研究报告的编制到工程竣工验收、投产运营共需12个月的时间。七、 研究结论项目产品应用领域广泛,市场发展空间大。本项目的建立投资合理,回收快,市场销售好,无环境污染,经济效益和社会效益良好,这也奠定了公司可持续发展的基础。八、 主要经济指标一览表主要经济指标一览表序号项目单位指标备注1占地面积31333.00约47.00亩1.1总建筑面积52650.551.2
16、基底面积19739.791.3投资强度万元/亩315.862总投资万元19787.392.1建设投资万元15266.532.1.1工程费用万元13461.672.1.2其他费用万元1322.042.1.3预备费万元482.822.2建设期利息万元191.822.3流动资金万元4329.043资金筹措万元19787.393.1自筹资金万元11958.063.2银行贷款万元7829.334营业收入万元39100.00正常运营年份5总成本费用万元30818.696利润总额万元8078.117净利润万元6058.588所得税万元2019.539增值税万元1693.3510税金及附加万元203.2011
17、纳税总额万元3916.0812工业增加值万元13536.0213盈亏平衡点万元13385.34产值14回收期年5.3215内部收益率23.98%所得税后16财务净现值万元10582.06所得税后第二章 市场预测一、 一体化压铸将全面提高生产环节的资金与技术壁垒汽车铝压铸属于资金密集型行业,一体化压铸进一步提升门槛。为了保证产品的精度、强度、可加工性等技术指标达到较高的水平,汽车铝压铸企业需要投入熔炼、压铸、模具生产、机加工、精密检测等加工设备,前期购置费用高。为了提升产品质量与生产效率,部分行业龙头企业不断推进自动化、智能化战略,引入工业机器人广泛应用于压铸、精密机加工、去毛刺、抛光等各生产工
18、序,以提高生产效率、降低生产成本、改善工作环境、精简生产用工、减少次品率以及提高产品质量稳定性,对企业的资金提出了更高需求。2021年以来大型化、一体化压铸进一步提升了大型压铸机的购置门槛。压铸机单价与吨位成正比关系:中小型压铸机(锁模力50吨以下)在15万以下,100吨以上价格随锁模力同步上升,1000吨以上价格增长幅度明显加快,5000T压铸岛单机采购金额约在1500-2000万元左右;压铸机周边配套设备通常增加20%-30%成本;国外进口压铸机价格更是高于国内2-3倍。大型一体化压铸机的采购与投产极大抬高了铝压铸行业的资金门槛。新能源渗透率提升驱动需求加速,三电技术迭代提升技术门槛。随着
19、新能源汽车渗透率快速提升,续航里程问题是新能源汽车积极布局轻量化技术的重要推手。特斯拉在ModelY车型首次尝试使用一体压铸结构件选择后底板进行压铸,很大原因是这个部位碰撞受损的几率小,而前车身和后车身的零部件对压铸件的抗撞等性能要求更高,对远浇端和近浇端性能的一致性也更苛刻,这些都对大型车身件乃至整车身的一体化压铸技术提出了更高的挑战。据中国能源报数据,新能源汽车三电系统通常占新能源汽车整车重量的30-40%,三电系统的轻量化是新能源汽车实现轻量化和提升续航的关键路径。随着整车厂对进行三电系统进行一体化设计,如高压三合一(DC-DC直流转换装置、OBC车载充电器、PDU高压配电箱)、驱动三合
20、一(电机、电机控制器、减速器)等,多合一装置的结构日益复杂,对适用于多合一装置的铝压铸壳体的结构、精度和性能的要求也愈发严格。因此采用一体化压铸技术生产结构复杂的铝制车身结构件、三电系统缸体和壳体需要更先进的工艺和更长久参数积累来保证铸件的良品率。新能源客户需求的日益多样化和高标准化,促使了铝压铸企业的技术分化和赛道竞争。汽车精密压铸件行业的技术壁垒呈现不断提高的趋势。大尺寸叠加复杂结构提高流动性要求,降低流长放大裕度抵消远端性能下降。一体化压铸的车身件通常具有尺寸大和结构复杂等特征,因此压铸过程中铝液在模腔内的流长较长,需要原材料具有良好的流动性。同时,一体化压铸件需要满足车身不同部位对受力
21、、强度以及韧性的不同要求。强度相关的结构件,抗拉强度通常210mpa,伸长率7。韧性相关的结构件的抗拉强度通常180mpa,伸长率10;然而随着流长增加,原材料充填远端的力学性能会有所下降,甚至与充填近端产生巨大差异,难以保证产品力学性能上的一致性。当前一方面可以在不改变产品结构外形的基础上,可以通过降低流长来大幅度提高充填末端的力学性能。从材料改良的角度,可以通过不断提高原材料的基础力学性能来抵消充填远端在力学性能上下降,通过放大原材料的性能裕度来满足一体化压铸产品的尺寸越来越大的要求。不同系列铝合金性能差异较大,流动性和力学性能平衡是关键壁垒。传统的汽车压铸铝合金包括Al-Si、Al-Cu
22、和Al-Mg三个主要系列。(1)Al-Si合金:Si元素的加入可以改善流动性。增加Si的含量话可提高铝合金的耐磨性、硬度和强度,降低收缩率,但导电性也会降低。含硅达到16%至18%的合金可以做发动机缸体。(2)Al-Cu合金:Cu可以通过固溶强化和时效强化提高合金的强度,有较高的热处理强化效果和较好的热稳定性,适合铸造高温下使用的零件,具有较高的机械性能,较好的切削性;但缺点是铸造性能较差,易产生裂纹,耐蚀性也不好。(3)Al-Mg合金:铝镁合金中镁元素占比大于5%,具有较好的抗拉强度和硬度,抗腐蚀性好。不同系列的铝合金材料虽然应用成熟,但性能差异较大。为保证流动性,应用于一体化压铸的铝合金需
23、要保有一定量的硅元素,但压铸后形成的粗晶硅又会严重影响材料的力学性能,这就需要加入不同的其它合金元素来细化晶粒。这又会增加材料成本,导致产品成本的大幅增加,无法批量运用。现有量产运用的材料都有着专利壁垒。图表43:常用压铸铝合金的化学成分与力学性能热处理可能降低一体化产品良率,免热处理材料进一步提升技术含量。传统的铝压铸车身件为满足高延伸率性能,通常需要进行热处理,但是随着一体化铸件尺寸越来越大,进行热处理时容易发生形变导致良品率降低,因此需要开发免热处理的铝合金材料。通过在现有合金的基础上添加新的微量元素或者调整微量元素比例以改善材料性能是免热处理材料的开发的主流路径。特斯拉、美国美铝、德国
24、莱茵菲尔德、立中集团、帅翼驰集团、华人运通与上海交大等企业均有布局。以立中集团研发的免热合金为例,免热合金含有更高硅量,无需经过热加工即可具备更高强度。特斯拉自研的新型铝合金材料强度可以调整至90MPa到150Mpa,导电性可以达到40%IACS到60%IACS。各家均对新材料配比严格保密,一旦新型免热处理材料配方试制成功并获得专利授权即可对竞争对手形成先发优势,进一步筑牢竞争壁垒。设备壁垒:一体化压铸需要大型化设备和定制化模具压铸机是铸件生产的核心设备,吨位提升推高生产难度。压铸机属于标准化机器,根据安装的模具不同以生产多样化零部件产品。根据工艺方式,压铸机分为热室与冷室压铸机,其中热室压铸
25、机的自动化程度高,材料损耗少,生产效率比冷室压铸机更高,但受机件耐热能力的制约,目前还只能用于锌合金、镁合金等低熔点材料的铸件生产,主要用于小型铝、镁合金压铸件的生产。而冷室压铸机由于熔点较高,当今广泛使用的铝合金压铸件只能在冷室压铸机上生产,1000吨以上的大型压铸机均为冷室机。压铸机合模后,通过压射系统将高温熔融金属液快速地充填至模具中,在压力作用下使熔融金属液冷却成型,开模后可以得到固体金属铸件。压铸机、压铸模具与配套的熔炼炉、机边炉、取件和清理喷雾机器人、切边设备、机加工机床、检测设备、冷却系统、排气系统等周边设备组合在一起,形成压铸岛。根据锁模力,压铸机分为小型(160-400吨)、
26、中型(400-1000吨)、大型(大于1000吨)和超大型(大于5000吨)压铸机。一体化压铸要求更高工艺水平,压铸机吨位不断突破提升。目前量产的铝合金单体压铸结构零件,如后纵梁、减震塔、尾门内板以及门框加强板等,形状规则,结构紧凑,型面变化小,料厚相对均匀,因而易于压铸。但一体压铸零件包含了整车左右侧的后轮罩内板、后纵梁、地板连接板、梁内加强板等零件,型面、截面以及料厚的变化都更加剧烈。因而一体式车身对工艺上的流态、压射比压与速度等参数的控制更加严格,对设备的精准与阈值、模具的抵抗冲击变形能力要求更为苛刻。当生产乘用车和商用车的变速箱外壳与发动机缸体等铸件时,压铸机的锁模力大致要求在5000
27、吨以内。随着一体化压铸技术的不断突破以及行业对轻量化的需求,一体化压铸的车身结构件尺寸逐渐增大,需要的压铸机的吨位相应提升。因此一体化压铸工艺所需的大吨位压铸机仍是制约企业量产的重要因素,但随着压铸机不断地吨位突破,该难题即将解决。以特斯拉为例,已将一体式压铸技术作为标准工艺进行布局,14台一体式压铸设备分置于四家工厂,其中,德州工厂计划引进1台IDRA8000吨级的压铸设备,和IDRA联合研发12000吨超级压铸机也在进行中。一体化压铸提高了模具壁垒,抗压力和形状设计要求激增。模具的设计与制造是生产一体化压铸件的重要前端工序,随着压铸机锁模力的提高,一体化压铸件精度的增加以及压铸件多合一趋势
28、带来设计复杂度的上升,模具的角度、热流道和制造成型难度提升,导致模具的抗压力、和形状设计要求激增。(1)抗压力。一体化压铸的锁模力增强,以前的压铸机锁模力大多在5000t以下,随着6000t、8000t甚至12000t压铸机的不断普及,模具在工作时将会承受更多压力,从而造成损伤。同时,在金属熔炼和铸件脱模时,模具需要承受各种维度的拉力和推力的影响,容易造成裂纹,影响模具的使用寿命。(2)形状设计。一体化压铸件往往是将多个零部件一体化压铸成型,比如长城和比亚迪的多合一壳体,所以模具体积更大,金属流通通道更加复杂。在压铸过程中,金属液将在模具中流动,随着模具结构的复杂化,金属液容易在流动通道的转角
29、处无法充分填充造成缺陷,同时更加容易产生气泡对良率产生影响。国内一体化压铸模具逐渐向定制化发展,铝压铸企业基本具有模具自研能力。不同车型大小、空间、结构存在差异,导致一体化压铸件并不能成为大多数车企通用的标准件,需要根据不同车型单独设计,进行定制化开发。由于模具壁垒的提高,铝压铸企业纷纷拓展技术团队成立单独的子公司或者部门,加强模具自研和定制化开发能力,随着一体化压铸的技术推进,铝压铸企业不断加强自主研发,部分龙头企业已经拥有大型和复杂模具的开发能力,具有先发优势。工艺壁垒:一体化压铸厂商需要兼具研发能力和生产经验积累面向客户需求提供产品方案,研发能力成为重要竞争环节。随着一体化压铸技术的落地
30、应用,因为一体化压铸的大型产品相对小型铸件的结构更复杂,不同部位的需要满足的力学性能和要求的工艺参数也可能差异巨大,所以在新产品生产前,压铸企业需要面向客户的需求深入参与到一体化产品的开发设计流程,即要参与到产品前期的方案设计中,根据客户需求和产品要求对压铸工艺进行针对性的参数优化、模具设计和技术改造,需要经过大量的试验论证和优化改造环节后才能通过生产批准程序并最终进入产品制造环节。是否具有独立开发甚至同步开发的能力是汽车一级零部件供应商和整车厂商选择供应商的重要评审标准。产品开发环节是客户与公司共同研发的过程,公司的技术研发能力成为核心竞争力之一,同时也是获取订单的重要手段之一。一体化压铸工
31、艺环节复杂,全流程操作要素确保产品质量。一体化压铸产品的大型化和结构复杂化趋势,对企业的压铸工艺参数控制和生产流程管理等都提出了更高要求。(1)合金熔化和处理:熔化过程中要避免金属杂质污染,快速熔化的同时不可过热,防止金属液氧化及偏析,氧化物和硬夹杂对铸件的铸造性能和力学性能都有不利影响,还需要控制熔损,保证合金的高塑性。(2)给液(浇注)方式:熔融金属液从注入口进入模具内部,因为结构复杂,金属液需要流经的路径不同,如何保证压铸件不同部位的性能一致性问题是一体化压铸工艺的关键。(3)脱模剂喷涂工艺:脱模剂或润滑剂可产生气体进入铸件,在选用脱模剂或润滑剂时,要经过验证,选用发气性低和挥发性好的产
32、品。(4)压铸过程:压铸工艺对生产合格的汽车结构件十分重要,正确地选择压射模式、压射参数等有利于减少压铸件中的缺陷。压铸机性能稳定,要有灵活的编程模式和实时控制系统,保证整个压铸过程合理及工艺参数偏差最小。对模具温度应进行精确控制,通过冷却水分配器,监控各个冷却回路的流量及温度,形成要求的温度分布。目前,具有传统高压压铸生产线的厂商中只有头部的几家掌握了一体化结构件的压铸工艺。可见一体化压铸工艺具有较高的技术门槛,行业格局将进一步向头部企业集中。产品精度要求不断提升,精密机加工能力重要性凸显。一体化压铸除了对原材料的熔炼、转运保温以及压铸成型等工艺要求高,对于铸件清理和铸件后处理等也都提出了新
33、的要求。压铸成型后需要铸件清理,将产品与辅助成型的浇道排气板集渣包分离,采用撞击,冲切,锯切等方式实现;铸件后处理指用铸件毛刺打磨等工序确保产品符合客户要求,通过固溶、时效处理或单独时效处理等工序改善铸件内部组织性能,通过研磨、喷砂、抛丸等工序实现铸件表面质量要求。压铸过程由于受到脱模斜度的要求,受到模具制造精度的限制及其热变形、脱模变形等高压压铸特定工艺的限制,导致铸件的尺寸精度、位置精度等可能没有达到图纸的设计要求。而像三电壳体这类对密封性能有极高要求的部件,除了满足机械强度等性能外,还需要严格保证产品的一致性和装配的标准化,确保三电系统壳体的密封性能从而避免在一些极端温度和高压环境下三电
34、系统发生失效。因此,需经过精密机械加工设备对铸件毛坯进行精确加工。随着一体化压铸产品的结构升级,汽车零部件的精度要求需要企业拥有更高的机加工能力。二、 铝合金加工分为铸造和形变,压铸工艺最为成熟与高效车用铝合金加工工艺分为铸造和形变,铝铸件在汽车用铝中占比最高。(1)铸造铝合金:将铝合金加热至熔融状态,流入模具中冷却成型后加工成汽车零部件。铸造铝合金具有良好的导热性和抗腐蚀性,兼顾提高汽车在纵向和横向震动中的性能。铸造铝合金被车企广泛使用在发动机气缸、汽车摇臂、轮毂、变速箱壳体等耐久性要求高、结构更为复杂的位置。(2)形变铝合金:变形铝合金是指通过冲压、弯曲、轧制、挤压等工艺使其组织、形状发生
35、变化的铝合金。应用上,铸造铝合金一般用于结构更加复杂的部件,形变铝合金则适用于结构较为简单、对机械性能要求更高的汽车部位。根据中国船舶重工集团数据显示目前汽车各类铝合金实际占比为铸铝77%,轧制材、挤压材各占10%,锻造材最低,仅占3%。形变铝合金机械性能好但应用范围有限,无法完成汽车精密结构件。车用形变铝合金主要包括锻造、挤压和轧制铝合金,三种形变铝合金受力方法不同,成形与性能也各不相同。(1)锻造铝合金质量良好,冲击力承受能力强,应用于大型轧钢机的轧辊、汽轮发电机组的转子、汽车和拖拉机的曲轴、连杆等。(2)挤压铝合金工艺灵活度高,挤压铝型材作车身骨架除了可以减轻重量,还可以通过局部零部件特
36、殊结构增加零部件强度,但存在废料损失大、工具损耗导致成本高等问题。(3)轧制是铝型材、铝板的主要成型工艺,主要用在金属材料型材、板、管材。形变铝合金具有塑性高、机械性能好的优点,但无法完成汽车精密结构件,产品应用范围有限。铸造铝合金工艺分为砂型铸造和特种铸造两大类,特种铸造更适用于汽车铝合金加工。砂铸是最为传统的在砂型中生产铸件的铸造方法,但产品精度不高且生产率较低;在其基础上进一步发展的重力铸造虽然可以进一步改善问题,但也存在限制铸件体积、需严格控制模具温度否则会影响铸件质量的问题。因此,砂型铸造在汽车零部件的应用并不广泛。砂铸之外的铸造工艺统称为特种铸造,包括压力铸造、挤压铸造、离心铸造、
37、连续铸造等。其中,压力铸造工艺最为成熟且高效;挤压铸造产品机械性能较好于一般压铸工艺,具有液态金属利用率高、工序简化和质量稳定等优点,但难以生产结构复杂的部件,影响产品应用范围;而离心、连续铸造的产品生产较为固定,离心铸造一般用于生产管状类器具,连续铸造则用于生产断面形状不变的长铸件。压铸是铸造工艺中最成熟、效率最高的制造技术之一,目前在汽车铸件中占比超70%。压铸是利用高压将金属熔液压入模具内,并在压力下冷却成型的制造工艺。根据中国有色金属加工工业协会数据分析显示,汽车用铝中压铸件占铸件的比重超70%。工艺优点:(1)压铸时金属液体承受压力高,流速快;(2)产品质量好,尺寸稳定,互换性好;(
38、3)生产效率高,压铸模使用次数多;(4)适合大批量生产,经济效益好。工艺缺点:(1)铸件容易产生细小的气孔和缩松,导致压铸件塑性低,不宜在冲击载荷及有震动的情况下工作;(2)高熔点合金压铸时,寿命低,影响压铸生产的扩大。为了解决上述气泡等缺点,压铸工艺如差压压铸、真空压铸等也在不断发展迭代。此前压铸工艺主要用于发动机缸盖和缸体、悬臂架、变速器、发电机支架、离合器壳、汽车空调压缩机等,目前随着一体化、大型化压铸技术的进步,逐步向大型三电、车身结构件等方向延伸。第三章 背景、必要性分析一、 市场测算:新能源助力全球铝铸件需求加速,预计2025年市场规模将超6600亿元2021年全球汽车铝合金市场规
39、模超4500亿元,预计2025年将增长至6695亿元。我们用单车用铝量乘以铝合金单价和汽车销量得到汽车铝合金市场容量。结合DuckerFrontier针对北美乘用车单车用铝(2020)以及欧洲铝协发布的欧洲乘用车用铝报告(2019),可知2020年北美、欧洲乘用车单车用铝量分别为208kg/辆、185kg/辆。参考国际铝业协会委托CMGroup完成的中国汽车工业用铝量评估报告(2016-2030),2021年中国燃油车单车用铝量预计为150kg/辆,新能源车单车用铝量预计为220kg/辆,新能源乘用车渗透率达14.2%,可算得整体单车用铝160kg/辆;2025年单车用铝量将达到240kg/辆
40、。假设汽车各地区汽车销量和铝合金件单价(40元/kg),可算得2021年北美、欧洲、中国铝合金市场分别为1517亿元、1297亿元、1759亿元,全球市场容量共计4573亿元,预计2025年全球铝合金将市场容量达到6695亿元。铝铸件占汽车用铝比例约77%,2021年中国汽车铝铸件市场规模约1355亿元,全球市场规模约3521亿元。根据中国有色金属加工工业协会相关文献显示,汽车铸造铝合金在汽车各类铝合金中实际占比约77%。我们用汽车铝合金市场容量乘以汽车铝铸件占比得到汽车铝铸件市场容量。其余假设与前文保持不变,可算得2021年北美、欧洲、中国铝合金市场分别为1168亿元、999亿元、1355亿
41、元,全球市场容量共计3521亿元,预计2025年全球铝合金将市场容量达到5155亿元。二、 轻量化技术多点突破,铝压铸工艺综合占优材料、工艺、设计多点突破,三大举措相辅相成。目前实现轻量化的路径主要包括材料、工艺和设计三个方向。1)轻量化材料:采用高强度钢、铝合金、镁合金、碳纤维材料等轻量化材料代替普通钢材料,通过降低用量或降低密度实现减重;2)轻量化工艺:发展一体化压铸、激光拼焊、液压成形、轻量化连接等制造工艺,通过减少零部件或连接件用量实现减重;3)轻量化设计:通过计算机自动化设计软件和力学理论对现有零部件进行尺寸优化、形状优化、拓扑优化实现产品减重。其中,材料轻量化是工艺和结构轻量化的基
42、础,根据轻量化材料的选用,工艺与结构在其基础上进行进一步减重设计;同时针对工艺与结构减重的技术发展,还可以进一步拓展不同的轻量化材料的应用范围。轻量化三大举措彼此相辅相成,共同发展。铝压铸工艺综合优势突出,一体化压铸趋势逐步凸显。在不同的轻量化材料中,铝合金的性能、密度、成本和可加工性等综合优势突出,与多种金属合金和碳纤维相比是极具性价比和技术成熟度的轻量化材料。在制造工艺中,高压压铸产品在高压下成型,具有致密性高、产品强度及表面硬度高、表面光洁度好等优势,适合生产复杂、薄壁的各类结构件。当前汽车技术迭代和产能提升需求不断加速,铝压铸方案综合优势明显。随着新型铝合金材料和大型压铸设备的研发攻关
43、不断取得突破,车企和压铸厂商已经开始陆续布局大吨位压铸机,一体化压铸技术的成熟度快速爬坡。随着大吨位压铸机的落地投产,采用一体化压铸技术生产大型车用结构件的趋势将更加清晰。一体化压铸技术可以生产更加复杂的结构件,从而为轻量化设计提供更可靠的生产工艺。三、 汽车轻量化势在必行,铝压铸工艺优势显著汽车尾气污染持续威胁环境,碳中和驱动节能减排势在必行。截至2021年底,我国机动车保有量达3.95亿辆,同比增长6.18%,年增量始终保持在两千万辆左右,中长期看仍具有较快增速。高机动车保有量使得机动车尾气污染严重。根据2020年发布的第二次全国污染源普查公报,机动车排放的氮氧化物、挥发性有机物分别达59
44、5/196万吨,占全国排放总量的33.3%与19.3%。因此,在蓝天保卫战和双碳政策驱动下,汽车减排、低碳化发展形势较为紧迫。燃油乘用车整体降耗目标不断提升,新能源汽车助力节能减排潜力显著。按照2020年10月正式发布的节能与新能源汽车技术路线图2.0规划,2020-2035年我国乘用车百公里油耗年均降幅逐步提高,减排压力逐年增加。然而依据国家部委发布的2016-2019年度中国乘用车企业平均燃料消耗量与新能源汽车积分核算情况表,可计算得到2016-2019年传统能源乘用车新车实际平均百公里油耗分别为6.88L、6.77L、6.62L及6.46L,始终高于达标油耗6.7L、6.4L、6L、5.
45、5L。但受新能源汽车销量持续提升影响,乘用车总体新车平均百公里油耗低于达标值,且拉动幅度越来越大。由此可见,新能源汽车具有较大节能减排潜力,随着新能源汽车渗透率的逐步提高,可以进一步缓解汽车行业的节能减排压力。技术路线图明确新能源发展目标,2035年节能与新能源汽车销量占比各50%。为进一步推动汽车低碳化进程,节能与新能源汽车技术路线图(2.0版)提出汽车产业碳排放总量先于国家碳排放承诺于2028年左右提前达到峰值,到2035年排放总量较峰值下降20%以上和新能源汽车逐渐成为主流产品,汽车产业实现电动化转型等愿景目标。具体里程碑目标如下:至2035年,节能汽车与新能源汽车年销量各占50%,汽车
46、产业实现电动化转型;氢燃料电池汽车保有量达到100万辆左右,商用车实现氢动力转型。全球电动化趋势不断提速,新能源汽车渗透率持续超预期。国际能源署(IEA)数据显示,2010-2020年,随着各国政府加速电动化转型,汽车行业全面向新四化进军,全球新能源汽车实现年销量十连增,CAGR约81%,新能源汽车(纯电+插混)渗透率由0.01%上升至接近4%。进入2021年以来,中国、欧洲作为全球前两大新能源汽车市场,销量表现持续超预期。2021国内新能源汽车累计销量352.1万辆,同比+158%,渗透率达14.2%,提升8个pct,首次突破两位数。同时期欧洲新能源汽车销量达214.2万辆,同比+70%,渗
47、透率达到14.6%,提升6个pct,延续了2020年以来超高景气表现;美国新能源汽车销量达65.2万辆,同比+101%,渗透率达到4.3%,提升2个pct,预计2022年有望达到8%。车重制约降耗、续航能力提升,轻量化需求顺应而生。电动车动力系统包括电池、电机和电控三大系统,通常占整车总质量的3040%,在动力电池能量密度的现有水平下,电动车以及广义新能源汽车的动力系统质量与空间占比显著高于传统燃油车,车重高于传统燃油车525%,未来搭载智能网联相关配置后,车重会进一步上升。以广汽丰田品牌的C-HR及其纯电车型C-HREV为例,纯电车型的整备质量高于燃油版本18.27%。目前,由于电驱动系统过重、配套成熟度不高等问题,电动汽车的实际续航能力被严重制约,成为影响消费者购车决策的重要因