费马大定理的简捷证明.docx

上传人:太** 文档编号:42312189 上传时间:2022-09-15 格式:DOCX 页数:2 大小:11.45KB
返回 下载 相关 举报
费马大定理的简捷证明.docx_第1页
第1页 / 共2页
费马大定理的简捷证明.docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《费马大定理的简捷证明.docx》由会员分享,可在线阅读,更多相关《费马大定理的简捷证明.docx(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、A Simple Proof of Fermats Last TheoremZengyong LiangFermat is a French justice and amateur mathematician .In 1637, Fermat was inadvertently attracted by the Pythagorean work described in the ancient Greek mathematician Diophantines arithmetic. He had a whim about whether he could find a solution to

2、the indefinite equation of the Pythagorean equation.The original Pythagorean equation can be expressed as the search equation:xn+ yn zninteger solution of.Fermat then annotated in the book arithmetic1: it is impossible to divide a cubic number into two cubic numbers, a fourth power into two fourth p

3、owers, or generally divide a power higher than the second power into two powers of the same power. On this, I am sure I have found a wonderful proof. Unfortunately, the blank space here is too small to write down.H This problem is then called Termafs Last Theorem”.For more than three centuries, the

4、best mathematicians in history have tried to prove it, but got nothing. In 1994, Wiles indirectly proved Fermats theorem by using modern mathematical methods such as modular form, Gushan Zhicun conjecture and the properties of elliptic curves of Galois group. But his proof is 130 pages long and quit

5、e esoteric, which is obviously not the short proof Fermat said. People are still seeking a concise Fermafs theorem as Fermat saidIf x, y and z have common factor, we can eliminate them. Is that the equation becomes An+Bn=Cn.So, we can say that:Fermats last theorem: If equationAn+Bn=cnthere is no pos

6、itive integer solution.Proof. If equation (1) is true, et A=CB=C-bf thenAn= (CQ)11An=Cn - (?”%+.+( -7)+( 1) n Q n(2)Bn= QCb) nBn=Cn - 0%+.+(-1)+(一,)1(3)By (2)4- (3):An+Bn=2Cn - 。-1(+匕)+.+(-匕n-l)+(_/)n(n +匕 n)(4)Since An + Bn = Cn, thenCn=2Cn 0-1(。+/?)+.+(/) n/C(an/+/?n-l )+(1) n(n 十 n)by (4).SoCn -

7、n +/?)+.+( -7) n.C(n+ bn-1)+(-)n(an + bn)=0(5)By Theorem 1, we know that ifCn +(-7)nn =0 ,(6)where this asked C-q .Comparison (5) and (6), we get:If (5) is true, this asked :a +h=q=C;a2 +h2=q2=C2;+ bn =q n=Cn.This is impossible, then equation (5) is not true. Thus, the equation (1) is not true.Theorem 1. IfCn 一。一%+.+(-1)this asked C-q.Proof. Since(C q ) n = c n nC% + +( 一) n-nC q n-1 +(/) % n ,then the equation only holds if C=q.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 解决方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁