《从算式到方程教学反思.docx》由会员分享,可在线阅读,更多相关《从算式到方程教学反思.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、从算式到方程教学反思从算式到方程教学反思1一、从课堂反思1、这堂课从简单问题入手,由浅至深,比较符合初一学生的认知性,学生了解了概念后马上让他们开启自己的智慧大门,并让学生自己找到符合概念的条件,加深印象。穿插式的练习,让学生能够趁热打铁,更加熟练的掌握和理解一元一次方程的一些概念。在上课的过程中更重视的是学生的探索学习,以及数学“建模”能力的培养。为后面学习打下基础。3、在课堂的第二个环节中,通过实际问题的引入,让学生动起脑来,阶梯型问题的设置使得一些后进生也投入到课堂中来,体现了差异性的教学。在学生慢慢列出方程的同时其实也培养了他们的逻辑思维能力,也体会到了列方程它与算式相比较之下的优点,
2、合作式的学生活动增进了学生的合作交流能力,我并通过一些激励性的话语激发学生参与数学的兴趣,在列完方程的最后让学生归纳出列方程解应用题的基本步骤。使学生加深对知识的掌握也培养了他们的语言组织能力以及学会标准的数学用语。二、从教学方法反思本节课本着 “尊重差异”为基础,先“引导发现”,后“讲评点拨”,所以再讲解前面概念的时候,我稍稍放慢速度让后进生听的明白,因为方程是解应用题的基础,抓住基础知识再去发展他们的逻辑思维能力对后进生是十分重要的。三、从学生反馈反思这堂课学生能积极思考,认真学习,课后作业都能及时完成。作业质量较好,但是对于稍难点的实际问题得列式还是有一些问题。在应用题的列式方面是所有学
3、生学习的一个难点,这是我后面课堂要注意的地方:如何去教会学生找到数量关系去列方程。从算式到方程教学反思2本节课的重难点都是从实际于问题中寻找相等关系,从而列方程解决实际问题,为了更好地突出重点、突破点,在教学过程中着力体现以下几方面的特点:1、突出问题的应用意识。首先用一个学生感兴趣的突出问题引入课题,然后运用算术方法给出答案,在各环节的安排上都设计成一个个问题,引导学生能围绕问题开展思考、讨论,进行学习。2、体现学生的主体意识。始终把学生放在主体地位,让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从感受到从算术方法到代数方法是数学的进步。通过学生之间的合作与交流,得了出问题的不同解
4、答方法,让学生对这节课的学习内容、方法、注意点等进行归纳。3、体现学生思维的层次性。首先引导学生尝试用算术方法解决问题,然后逐步引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系,设未知数及练习和作业的布置等环节中,都注意了学生思维的层次性。4、渗透建模的思想。把实际问题中的数量关系用方程的形式表示出来,就是建立一种数学模型,有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出数学模型的能力。从当堂练习和作业情况来看,收到了很好的教学效果,绝大部分学生都能根据实际问题准确地建立数学模型,但也有少数几个学生存在一定的问题,不能很好地列出方程。【拓展阅读】从算式
5、到方程教学设计1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。建立一元一次方程的概念。问题与情境师生活动设计意图一、创设情境,展示问题:问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨?问题2:章前图中的汽车匀速行驶途经王
6、家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远?地名时间王家庄10:00青山13:00秀水15:00教师展示问题,要求用算术解法,让学生充分发表意见。算术方法:(124+1)25=5(吨)方程方法:可设大象重为x吨,则124=25x1学生独立思考,小组交流,代表发言,解释说明。问题1的算术解法:(50+70)2=60(千米/时)60*570=230(千米)问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。示意图有助于分析问题。二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路
7、程是x千米,则:路程时间速度王家庄青山王家庄秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。2、比一比:列算式与列方程有什么不同?哪一个更简便?3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么?结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。学生思考回答:1、王家庄青山(X50)千米,王家庄秀水(X+70)千米。2、汽车以每小时(X50)3千米的速度从王家庄到青山;以每小时(X+70)5千米的速度从王家庄到秀水。让学生体会:用算术方法解题时,列出的算式只能用已知数,而列方程解题时,方程中既含有已知数,又含有用字母表
8、示的未知数。三、定义方程,建立模型1、定义:(板书)含有未知数的等式叫做方程。练习一:判断下列式子是不是方程,是的打“”,不是的打“x”。(1)1+2=3()(4)()(2)1+2x=4()(5)x+y=2()(3)x+13()(6)x21=0()练习二:根据下列问题,设未知数并列出方程。(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为xcm。那么依题意得到方程:_。(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?解:经过x月这台计算机的使用时间达到规定的修检时间2450小时,那么依
9、题意得到方程:_。(3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生为x,那么女生数为,男生数为。由此依题意得到方程:_。议一议:上面的四个方程有什么共同点?2、定义:只含有一个未知数(元X),未知数的指数是1次,这样的方程叫做一元一次方程。练习三:判断下列方程哪些是一元一次方程?(1)(2)(3)(4)(5)3、方程的解:再看刚才列出的方程:4x=24,你能观察出当x=?时,4x的值正好等于24吗。学生回答后总结方程的解和解方程的概念。4、归纳分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。(学生举例并完成练习一)
10、师生合作,根据数量关系列出方程。教师结合练习给出方程、一元一次方程的定义。(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根)方程的解:使方程中左右两边相等的未知数的值就是这个方程的解。教师引导学生对上面的分析过程进行思考,将实际问题转化为数学问题的一般过程。学生举出方程的例子。(学生独立思考、互相讨论,先分析出等量关系,再根据所设未知数列出方程)判断哪些是一元一次方程。学生单独计算,并填表。学生得出解决实际问题的模型。四、训练巩固,课堂小结1、根据下列问题,设未数列方程,并指出是不是一元一次方程。(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?(
11、2)甲种铅笔每枝0。3元,乙种铅笔每枝0。6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(3)一个梯形的下底比上底多2,高是5,面积是402,求上底。2、小结本节课你学到了哪些知识?哪些方法?五、布置作业A、必做82页,第1、2、3、题;B、拓展阿凡提经过了三个城市,第一个城市向他征收的税是他所有钱财的一半又三分之一,第二个城市向他征收的税是他剩余钱财的一半又三分之一,到第三个城市里,又向他征收他经过两次交税后所剩余钱财的一半又三分之一,当他回到家的时候,他剩下了11个金币,问阿凡提原来有多少个金币?C、课堂评价1、本节课的主要知识点是:2、你对列方程这节课的感受是:3、这节课我的
12、困惑是:解:(1)设跑x周。列方程400x=30004、(2)设甲种铅笔买了x枝,乙种铅笔买了(20x)枝。列方程0。3x+0。6(20x)=9(3)设上底为xcm,下底为(x+2)cm。列方程学生自己探索,独立完成,集体订正。学生课后完成,并写学习心得。从算式到方程教学反思3这节课的内容是一元一次方程第一课时。课后,我对本节课从四方面进行了如下反思:一:对选择引例的反思二:对选题的反思我在备课中【活动3】最初选用的题是:(1)21+2 =23(2)5x4(3)6x28 (4)9x+23(5)6y+2y4修改后的题是:判断下列各式是方程的有:(1) (2) (3) (4) (5)考虑到学生初对
13、方程概念的研究,不在数字上人为的设置障碍,因为是否是方程与数字的大小根本无关,于是把数字全部统一成了6、2、8三个数,利于学生从未知数和等号的角度进一步理解方程的概念。最初选用的题数字太多,显得题很多且条理性不强,容易分散学生对概念本质的把握。改进后的题目更利于学生观察方程的特征,从而更深刻地掌握概念的本质。需要特别说明的是,如果说前5个小题是为了让学生抓住方程的两个要点,那么后3个小题则是对概念本质的提升,即:是否是方程与未知数所在的位置、未知数的个数、未知数的次数等均无关。三:对课堂实践的反思本节课的设计思路:首先以“名题欣赏”导入,引入概念,通过四组练习让学生深刻理解方程和一元一次方程的
14、概念,最后由学生自己归纳小结。当环节进行到【活动3】时,我让学生写出一个或几个方程,在给学生判断点评时,我发现学生在黑板上写的全部都是未知数在等号左边的方程,这时我突然意识到学生在模仿我前面呈现的方程,不禁暗自责怪自己考虑不周,怎么没出一个等号两边都含有未知数的方程呢?它给我敲响了一个警钟。正当我想写一个等号两边都含有未知数的方程来弥补设计上的不足时,我忽然发现最后一排的一位男生已经高高地举起了手,他提出问题:“老师:等号两边都含有未知数的式子是不是方程,例如:2y13y”?我为有学生能提出这样的问题而感到庆幸,一是因为它及时弥补了我备课中的不足;二是由学生提出问题要比我提出问题更有价值。这可
15、以反映出该生善于思考,同时也反映出了学生真实的疑惑。为了提高学生的探究能力,我并没有急于解释,而是把问题抛给学生,让学生来解决。我立刻提出:“谁能解决这位同学提出的问题呢?”这时我看到后面几位学生已经高高地举起了手。我随机点了一名学生,这位同学回答到:“判断一个式子是不是方程只要看是否含有未知数和等号就OK了,与未知数的位置无关!”他精彩的回答引起听课教师一阵喝彩!我也顿时惊喜万分,他说的太好了,不管是语言表达还是准确性上都无可挑剔。我为敢于给学生这样一个机会又一次感到庆幸;通过这个同学精彩的回答,我深深地感受到:“教师给学生一个机会,学生就会还你一个惊喜。”四:教后整体反思成功之处:1.引例
16、、练习题的选择都很恰当。2.思路清晰,重点突出,注意到了学生的自主探索,节奏把握较好。3.数学文化的渗透比较自然。4.“写一个或几个一元一次方程”此环节的设计体现了从理论到实践的过程,使学生的能力得到提升,学习效果得到落实。5.语言简练,教态大方,师生互动比较热烈,充分调动了学生的积极性。6.板书设计较为合理。本节课的主要内容都以提炼的方式呈现出来。不足之处:1.在处理三道实际背景题时留给学生的思考时间偏少,显得仓促。2.在后面两组题环节之间的过渡语言不是很自然。3.授课语言仍需加强锤炼。这节课的准备和每个环节的设计我颇费了一些心思,上完课之后总的感觉是达到了我预期的目标。非常感谢评委组的老师们中恳的建议,以及同行们的肯定,这让我受益匪浅。在今后的教学中,我将扬长避短,力争做的更好!