2018年广西普通高中学业水平考试数学学科考试大纲与说明.pdf

上传人:半** 文档编号:4220954 上传时间:2021-06-11 格式:PDF 页数:25 大小:1.29MB
返回 下载 相关 举报
2018年广西普通高中学业水平考试数学学科考试大纲与说明.pdf_第1页
第1页 / 共25页
2018年广西普通高中学业水平考试数学学科考试大纲与说明.pdf_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《2018年广西普通高中学业水平考试数学学科考试大纲与说明.pdf》由会员分享,可在线阅读,更多相关《2018年广西普通高中学业水平考试数学学科考试大纲与说明.pdf(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 1 20182018 年广西普通高中学业水平考试年广西普通高中学业水平考试 大纲与说明大纲与说明 数数 学学 一、考试性质、目的和对象 广西普通高中数学学业水平考试是根据 教育部关于普通高中学业水平考试的实施意见 (教基二201410 号)和自治区教育厅颁发的 广西普通高中数学学科教学指导意见(试行) 的相关精神和要求设置的, 是由自治区教育厅组织实施的省级国家教育考试。 考试以教育部 2003 年印发的普通高中课程方案(实验)、普通高中数学课程标准(实验)为依 据,是面向广西全体普通高中学生数学学业水平的标准参照性考试。 凡具有广西普通高中 (含综合高中) 学籍且修完数学课程的学生均须参加

2、本科目的测试。 按照广西普通高中学籍管理条例规定, 在本考试中取得合格及以上等级是广西普通高中学生 毕业的必备条件之一, 也是普通高中同等学历认定的主要依据之一, 本考试结果也是高等学 校招生录取的重要参考之一。 本考试结果以 A、B、C、D 四个等第形式报道,其中 D 为不合格。 二、考试目标考试目标 广西普通高中数学学业水平考试旨在考查考生经过学习国家规定的普通高中数学课程 后, 在数学学科方面应达到的基本素养。 具体表现在数学基础知识和基本技能以及直观想象、 数学抽象、数学运算、逻辑推理、数据分析、数学建模等数学素养。 1. 1. 基础知识和基本技能基础知识和基本技能 1.1 理解或掌握

3、普通高中数学课程标准(实验)规定的必修课程、选修课程系列 1 与选修课程系列 2 中的相同部分内容的数学概念、性质、法则、公式、公理、定理以及由其 内容反映的数学思想方法。 1.2 能按照一定程序与步骤进行简单的数学运算、数据处理和图表绘制。 2 2.2.直观想象直观想象 2.1 能够在熟悉的情境中建立简单图形与实物之间的联系, 能够描述简单空间形式的位 置关系和度量关系及其特有的性质。 2.2 能够通过图形直观认识数学问题, 能够用图形描述和表达熟悉的问题以启迪解决这 些问题的思路。 3.3.数学抽象数学抽象 3.1 能够解释数学概念和规则的含义,了解数学命题的条件与结论,能够在熟悉的情境

4、中抽象出数学问题。 3.2 能够在熟悉的情境中直接抽象出数学概念和规则, 能够了解用数学语言表达的推理 和论证,能够结合实际情境解释相关的抽象概念。 4.4.数学运算数学运算 4.1 能够在熟悉的数学情境中,了解运算对象,提出运算问题,根据问题的特征建立合 适的运算思路解决问题。 4.2 能够了解运算法则及其适用范围,正确进行运算,能够运用运算验证简单的数学结 论,能够用运算的结果说明问题。 5.5.逻辑推理逻辑推理 5.1 能够在熟悉的情境中,用归纳或类比的方法发现数量或图形性质、数量关系或图形 关系。 5.2 了解熟悉的数学命题的条件与结论之间的逻辑关系,能够证明简单的数学命题并有 条理地

5、表述论证过程。 6.6.数据分析数据分析 6.1 能够在熟悉的情境中了解随机现象,能够对熟悉的概率问题选择合适的概率模型解 决问题。 3 6.2 能够对熟悉的统计问题,选择合适的抽样方法收集数据,掌握描述、刻画、分析 数据的基本统计方法解决问题。 7.7.数学建模数学建模 7.1 了解熟悉的数学模型的实际背景及其数学描述,了解数学模型中参数、结论的实际 含义。 7.2 知道数学建模的过程,能够在熟悉的实际情境中,模仿学过的数学建模过程解决问 题。 三、考试内容和要求 (一)考试范围(一)考试范围 本考试范围为普通高中数学课程标准(实验)的必修课程、选修系列 1 和选修系列 2 的相同内容部分。

6、 (二)考试内容、要求与说明(二)考试内容、要求与说明 内容领域内容领域 内容主题内容主题 考考试试要求要求 函数函数 集合与常用集合与常用 逻辑逻辑 了解集合的含义、元素与集合的“属于”关系 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题 理解集合之间包含与相等的含义,能识别给定集合的子集 在具体的情境中了解全集与空集的含义 理解两个集合的并集、交集、补集的含义,能求两个简单集合的并集与交集, 能求 给定子集的补集,能使用 Venn 图表达集合的关系 了解命题的概念 了解“若 p 则 q”形式的原命题的逆命题、否命题与逆否命题,初步学会分析四种 命题的相互关系 理解充分

7、条件、必要条件和充要条件的意义 知道逻辑联结词“或”、“且”和“非”的含义 了解全称量词与存在量词的意义,能对简单的含有一个量词的命题进行否定 函数的概念函数的概念 了解构成函数的要素,会求一些简单函数的定义域和值域 会选择恰当的方法(如图象法、列表法、解析法)表示函数 了解简单的分段函数,会进行简单应用 4 结合函数图像,会用符号语言表达简单函数的单调性、最大值、最小值,理解它 们的作用和实际意义 结合具体函数了解函数奇偶性的含义 结合二次函数图象判断一元二次方程根的存在性及根的个数,了解函数的零点与 方程根的联系 结合具体函数的图像了解二分法是一种求方程近似解的常用方法 基 本 初 等 函

8、基 本 初 等 函 数数 I I 理解根式与分数指数幂的概念及其互化,能进行有理数指数幂的运算,化简、计 算一些简单的式子 理解指数函数的概念及其单调性、指数函数图象通过的特殊点 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或 常用对数,会用对数的运算性质及运算法则计算一些简单的式子 了解对数函数的概念及其单调性、对数函数图象通过的特殊点;知道指数函数与 对数函数互为反函数 了解幂函数的概念, 结合函数 2 1 32 , 1 ,xy x yxyxyxy的图象了解它们的 变化情况 结合具体实例知道直线上升、指数爆炸、对数增长等不同函数类型增长的含义 基本初等函基本初等函

9、数数 IIII (三角函数)(三角函数) 了解任意角、弧度制的概念,能进行弧度与角度的互化 了解任意角三角函数(正弦、余弦、正切)的定义。了解三角函数的周期性。 会用同角三角函数的基本关系式 会用正弦、余弦、正切函数的诱导公式解决简单的相关问题 会画出正弦、余弦、正切函数的图象 理解正弦、余弦函数在区间2 , 0上的性质(如单调性、最大和最小值、图象与 x 轴交点等)、理解正切函数在一个区间 2 , 2 上的性质 了解函数的图象,知道参数 A, 对函数图象变化的影响 三角恒等变三角恒等变 换换 会用两角和与差的正弦、余弦进行简单的三角恒等变换 会用二倍角的正弦、余弦进行简单的三角恒等变换 导数

10、及其应导数及其应 用用 会用三角函数解决一些简单实际问题 理解导数的几何意义 会用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数 会用导数研究简单函数的单调性,会求简单函数的单调区间 会用导数求出函数的极大值、极小值(其中多项式函数不越过 3 次) 会用导数求在给定区间上函数的最大值、最小值 数列数列 了解数列的概念和表示法 )sin(xAy 5 理解等差数列的定义及证明的基本方法,会用等差数列的通项公式、前 n 项和公 式解决简单的问题 理解等比数列的定义及证明基本方法,会用等比数列的通项公式、前 n 项和公式 解决简单的数列问题 不等式不等式 会解简单的一元二次不等式 会

11、用平面区域表示二元一次不等式(组) 会抽象出一些简单的二元线性规划问题,并加以解决 会用基本不等式解决简单的最大(小)值问题 几何与代几何与代 数数 数系的扩充数系的扩充 与复数的引与复数的引 入入 理解复数的基本概念 会进行复数代数形式的四则运算 算法初步算法初步 了解程序框图的概念,了解程序框图的三种基本逻辑结构:顺序、条件分支、循 环 了解几种基本算法语句输入语句、输出语句、赋值语句、条件语句、循环语 句的含义 立体几何初立体几何初 步步 了解柱、锥、台、球及简单组合体的结构特征 能画出长方体、球、圆柱、圆锥、棱柱等的简易组合的三视图,能识别上述的三 视图所表示的立体模型;初步学会用斜二

12、测法画出它们的直观图 了解球、棱柱、棱锥、台的表面积和体积的计算公式 理解空间直线、平面位置关系的定义,会用平面的基本性质说明点、线、面的空 间位置关系 能用公理 4 及等角定理判断空间直线间的位置关系 知道空间直线与平面的位置关系及其表示方法 知道空间平面与平面的位置关系及其表示方法 会用直线与平面平行的判定方法和性质研究简单的直线与平面平行关系 会用平面与平面平行的判定方法和性质研究简单的平面与平面平行关系 会用直线与平面垂直的判定方法和性质研究简单的直线与平面间的垂直关系 会用两个平面垂直的判定方法和性质研究简单的平面间的垂直关系 能用已获得的结论证明空间基本图形位置关系的简单命题 了解

13、空间直角坐标系的意义,会求空间点的坐标和空间两点间的距离 解析几何初解析几何初 步步 理解直线的倾斜角与斜率的概念,会求过两点的直线的斜率 能根据斜率判定两条直线平行或垂直 能用直线方程的点斜式、两点式和一般式表示直线,了解斜截式与一次函数的关 系 会用解方程组的方法求两条相交直线的交点坐标 会用公式求两点间、点到直线距离,会求两条平行线间的距离 掌握确定圆的几何要素,掌握圆的标准方程 会将圆的标准方程和圆的一般方程互化,由圆的一般方程会求圆的圆心坐标及半 径 6 会根据给定的直线、圆的方程,利用代数方法和几何方法判断直线与圆、圆与圆 的位置关系 会用直线和圆的方程解决一些简单的问题 圆锥曲线

14、与圆锥曲线与 方程方程 掌握椭圆的定义、几何图形、标准方程及简单几何性质 了解双曲线、抛物线的定义、几何图形、标准方程及简单几何性质 平面向量平面向量 理解向量的几何表示 理解向量相等和向量共线的含义,初步应用向量共线的条件解决一些简单问题 掌握向量加法和减法运算,向量数乘运算,理解其几何意义 理解平面向量的正交分解及其坐标表示 会用坐标表示平面向量的加、减与数乘运算 会用坐标表示平面向量共线、垂直的条件 理解平面向量数量积的含义和向量运算律,初步应用数量积定义及其运算律进行 简单计算 了解平面向量数量积的坐标表示,初步学会进行平面向量数量积的坐标运算 能运用数量积表示向量的模、夹角,会用数量

15、积判断两个平面向量的垂直关系 推理与证明推理与证明 了解独立性检验的基本思想和方法,了解 2 2 列联表及其初步应用 了解合情推理的含义,初步学会利用归纳和类比等进行简单的推理 理解演绎推理的基本模式,并能运用它们进行一些简单推理 了解分析法、综合法、反证法的思考过程、特点 解三角形解三角形 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题 理解正弦定理、余弦定理,能解决简单的三角形度量问题、与测量和几何计算有 关的实际问题 概率与统概率与统 计计 统计统计 会用简单随机抽样方法从总体中抽取样本,了解系统抽样和系统抽样方法 会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它

16、们各自的 特点 会从样本数据中提取基本数字特征(如平均数、标准差),并给出合理的解释 会用样本的频率分布表估计总体分布,会用样本的基本数字特征估计总体的基本 数字特征 知道作两个有关联变量的数据散点图的方法,了解利用散点图认识变量之间的相 关关系 知道最小二乘法的思想。知道根据给出的线性回归方程系数公式建立线性回归方 程 概率概率 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率 的区别 了解两个互斥事件的概率加法公式 理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件 数及事件发生的概率 了解几何概型的意义,会求简单几何概型问题的概率 7 四、考试形

17、式及试卷结构 (一)考试形式(一)考试形式 考试采用闭卷、笔试形式;全卷满分 100 分,考试时间为 120 分钟。 ( (二)试卷结构二)试卷结构 1.题型与分值 题型 题 量 分值 选择题 约 20 小题 约 60 分 填空题 约 6 小题 约 12 分 解答题 约 4 小题 约 28 分 2.内容分值与比例 其中对数学基础知识与基本技能的考查约占 70%,对直观想象素养、数学抽象素养、数 学运算素养、逻辑推理素养、数据分析素养和数学建模素养的考查约占 30%。 3.难度分值与比例 难度及比例:易、中、难试题比例为 721,具体如下 函数 50, 50% 几何与代 数 40, 40% 统计

18、与概 率 10, 10% 难度类别 难度系数 分 值 比 例 容易题 0.85 以上 约 70 分 约 70% 中档题 0.600.85 约 20 分 约 20% 难 题 0.400.60 约 10 分 约 10% 8 五、题型示例 (一一)选择题选择题 【例 1】已知集合M1xx,下列关系式中正确的是 A. 0M B.0M C. 0M D.M 【正确答案】【正确答案】A 【考查目标】【考查目标】基础知识和基本技能/理解或掌握普通高中数学课程式标准(实验)规定 的必修课程、选修课程系列 1 与选修课程系列 2 的相同部分内容的数学概念、性质、法则、 公式、公理、定理以及由其内容反映的数学思想方

19、法。 【知识内容】【知识内容】函数/集合与常用逻辑/了解集合的含义、元素与集合的“属于”关系。 【试题分析】【试题分析】因为 01, 0表示集合,A 正确。 【例 2】1977 年是高斯诞辰 200 周年,为纪念这位伟大的数学家对复数发展所 做出的杰出贡献,德国特别发行了一枚邮票(如图)这枚邮票上印有 4 个复 数,其中的两个复数的和:) i 65() i 44( A1 10i B 29i C92i D 10 i 【正确答案】【正确答案】A 【考查目标】【考查目标】数学运算素养/能够了解运算法则及其适用范围,正确进行运算, 能够运用运算验证简单的数学结论,能够用运算的结果说明问题。 【知识内容

20、】【知识内容】几何与代数/数系的扩充与复数的引入/会进行复数形式的四则运算 【试题分析】【试题分析】根椐复数代数形式的四则运算法则:实部与实部相加,虚部与虚部相加即得, A 正确。 【例 3】经过点(0 2) P,且斜率为 2 的直线方程为 A220 xy B220 xy C220 xy D220 xy 【正确答案】【正确答案】C 【考查目标】基础知识和基本技能/理解或掌握普通高中数学课程式标准(实验)规定 的必修课程、选修课程系列 1 与选修课程系列 2 的相同部分内容的数学概念、性质、法则、 公式、公理、定理以及由其内容反映的数学思想方法。 【知识内容】几何与代数/解析几何初步/能用直线的

21、点斜式、两点式和一般式表示直线 【试题分析】 由已知直线过点(0 2) P,且斜率2k, 代入点斜式方程 11 xxkyy得: 022xy,化简并整理得220 xy,C 正确。 【例 4】在下列水平放置的几何体中,正视图是右图的是 【正确答案正确答案】 C 例4题图 例 2 图 9 【考查目标】【考查目标】直观想象素养/能够在熟悉的情境中建立实物与图形之间的联系,能够描述简 单空间图形的位置关系和度量关系及其特有的性质。 【知识内容】【知识内容】几何与代数/立体几何初步/能画出长方体、球、圆柱、圆锥、棱柱等的简易组 合的三视图,能识别上述的三视图所表示的立体模型。 【试题分析】【试题分析】由于

22、正视图是左图中的三角形,说明其几何体是锥体,C 正确。 【例 5】如图所示,一个空间几何体的正视图和侧视图都是边长为 2 的等边三角形,俯视图 是一个圆,那么这个几何体的体积为 A 4 3 B 3 3 C 2 3 D3 【正确答案正确答案】B 【考查目标】【考查目标】基础知识和基本技能/理解或掌握普通高中数学课程式标准(实验)规定 的必修课程、选修课程系列 1 与选修课程系列 2 的相同部分内容的数学概念、性质、法则、 公式、公理、定理以及由其内容反映的数学思想方法。 【知识内容】【知识内容】几何与代数/立体几何初步/能画出长方体、球、圆柱、圆锥、棱柱等的简易组 合的三视图,能识别上述的三视图

23、所表示的立体模型;了解球、棱柱、棱锥、台的表面积和 体积的计算公式。 【试题分析】【试题分析】由正视图和侧视图都是三角形,说明其几何体是锥体,再由俯视图是圆,说明 底面是圆,所以该几何体为圆锥。圆锥的底面半径为 1,母线长为 2,所以高为3。所以 所求圆锥体积为 3 3 3 1 2 hrV,B 正确。 【例 6】下列命题中正确的是 A若直线 m平面,直线 n,则 mn B若直线 m平面,直线 n,则 mn C若平面平面,直线 n,直线 n,则 mn D若平面平面,直线 m 【正确答案正确答案】B 【考查目标】【考查目标】直观想象素养/能够在熟悉的情境中建立实物与图形之间的联系,能够描述简 单空

24、间图形的位置关系和度量关系及其特有的性质。 【知识内容】【知识内容】几何与代数/立体几何初步/知道空间直线与平面的位置关系及表示方法。 【试题分析】【试题分析】利用正方体为载体,通过正方体各棱和各面的位置关系,可举出 A,C,D 三 个选项的反例,说明不成立。C 正确。 【例 7】如图,P是ABC所在的平面内一点,且满足BA BCBP ,则 例5图 俯视图 侧视图 正视图 10 ABAPC BBCPA CAPCPBP DBABPAP 【正确答案正确答案】C 【考查目标】【考查目标】基础知识和基本技能/理解或掌握普通高中数学课程式标准(实验)规定 的必修课程、选修课程系列 1 与选修课程系列 2

25、 的相同部分内容的数学概念、性质、法则、 公式、公理、定理以及由其内容反映的数学思想方法。 【知识内容】【知识内容】几何与代数/平面向量/掌握向量加法和减法的运算,向量数乘运算,理解其几 何意义。 【试题分析】【试题分析】由向量相等的概念知APBC,根椐向量的加法运算得到选项 C 正确。 【例 8】 一个箱子中装有大小相同的红球、 白球、 黑球各一个, 从中任取一个球, 记事件 “取 出红球”为 M,事件“取出白球”为 N,则下列说法正确的是 AM 为不可能事件 BN 为必然事件 CM 和 N 为对立事件 DM 和 N 为互斥事件 【正确答案正确答案】D 【考查目标】【考查目标】数学抽象素养/

26、能够解释数学概念和规则含义,了解数学命题的条件结论,能 够在熟悉的情境中抽象出数学问题。 【知识内容】【知识内容】几何与代数/概率与统计/了解两个互斥事件的概率加法公式。 【试题分析】【试题分析】由题意,事件 M 与事件 N 不可能同时发生,也可能都不发生,所以 M 与 N 是互斥但不对立事件, D 正确。 【例 9】“x2”是“x5”的 A充分而不必要条件 B必要而不充分条件 C充要条件 D既不充分也不必要条件 【正确答案正确答案】B 【考查目标】【考查目标】逻辑推理素养/了解熟悉的数学命题的条件与结论之间的逻辑关系,能够证明 简单的数学命题并有条理地表述论证过程。 【知识内容】【知识内容】

27、函数/集合与常用逻辑/理解充分条件、必要条件和充要条件的意义。 【试题分析】【试题分析】由题意, “x2”是“x5”的条件,易知“x2”不一定只有“x5”, 但“x5”一定能推出“x2”,B 正确。 【例 10】命题“若两个三角形全等,则这两个三角形的面积相等”的逆命题是 A若两个三角形的面积相等,则这两个三角形全等 B若两个三角形不全等,则这两个三角形的面积相等 C若两个三角形的面积相等,则这两个三角形不全等 D若两个三角形不全等,则这两个三角形的面积不相等 【正确答案正确答案】A 【考查目标】【考查目标】逻辑推理素养/了解熟悉的数学命题的条件与结论之间的逻辑关系,能够证明 简单的数学命题并

28、有条理地表述论证过程。 【知识内容】【知识内容】函数/集合与常用逻辑/了解“若 p 则 q”形式的原命题的逆命题、否命题及逆否 命题,初步学会分析四种命题的相互关系。 P 例7图 B A C 11 【试题分析】【试题分析】由题意,只需将原命题的条件与结论互换即可得到逆命题,A 正确。 【例 11】已知某种细胞分裂时,由 1 个分裂成 2 个,2 个分裂成 4 个依此类推,那么 1 个这样的细胞分裂 3 次后,得到的细胞个数为 A4 个 B8 个 C16 个 D32 个 【正确答案正确答案】B 【考查目标】【考查目标】逻辑推理素养/能够在熟悉的情境中,用归纳或类比的方法发现数量关系或图 形性质、

29、数量关系。 【知识内容】【知识内容】函数/基本初等函数/理解指数函数的概念及其单调性、指数函数图象通过的 特殊点。 【试题分析】【试题分析】利用题意,分裂出的细胞个数可构成等比数列,公比是 2,从而 1 个这样的细 胞分裂 3 次后,得到的细胞个数为 8,B 正确。 【例 12】从某中学高三年级中随机抽取了 6 名男生,其身高和体重的数据如下表所示: 由以上数据,建立了身高x预报体重y的回归方程0.8071.6yx那么,根据 上述回归方程预报一名身高为 175cm 的高三男生的体重是 A80 kg B71.6 kg C68.4 kg D64.8 kg 【正确答案正确答案】C 【考查目标】【考查

30、目标】数据分析素养/能够对熟悉的统计问题,选择合适的抽样方法收集数据,掌握 描述、刻画、分析数据的基本统计方法解决问题。 【知识内容】【知识内容】函数/统计/知道最小二乘法的思想。知道根椐给出的线性回归方程系数公式建 立线性回归方程。 【试题分析】【试题分析】利根据题设身高=175x代入回归方程0.80 17571.6=y 68.4,从而答案为 C 正确。 【例 13】在“世界读书日”前夕,为了了解某地 5000 名居民某天的阅读时间,从中抽取了 200 名居民阅读时间进行统计分析,在这个问题中,5000 名居民的阅读时间的全体是 A个体 B样本的容量 C总体 D从总体中抽取的一个样本 【正确

31、答案正确答案】C 【考查目标】【考查目标】数据分析素养/能够对熟悉的统计问题,选择合适的抽样方法收集数据,掌握 描述、刻画、分析数据的基本统计方法,解决问题。 【知识内容】【知识内容】函数/统计/会用简单随机抽样方法从总体中抽取样本,了解系统抽样和系统抽 样方法。 【试题分析】【试题分析】 从5000名居民某天的阅读时间中抽取200 名居民的阅读时间, 样本容量是 200, 抽取的 200 名居民的阅读时间是一个样本,每名居民的阅读时间就是一个个体,5000 名居 民的阅读时间的全体是总体,C 正确。 【例 14】执行如图所示的程序框图,输出的结果是 A3 B9 C27 D64 编号 1 2

32、3 4 5 6 身高/cm 170 168 178 168 176 172 体重/kg 65 64 72 61 67 67 12 【考查目标】【考查目标】基础知识和基本技能/能够按照一定的规则和步骤进行计算、 画图 和推理。 【知识内容】【知识内容】 几何与代数/算法初步/了解几种基本算法语句输入语句、 赋值语句、条件语句、循环语句的含义。 【试题分析】【试题分析】根据题意,第一次循环结果输出的 M=89,再经过第二次 循环 易得 n=3,从而第二次输出的 M=279,不再循环,从而答案 C 正确。 (二二)填空题填空题 【例 1】幂函数yx图象经过点(4,2),则这个幂函数的解析式是 _。

33、【正确答案正确答案】 1 2 yx 【考查目标】【考查目标】数学运算素养/能够在熟悉的数学情境中,了解运算对象,提出运算问题,根 椐问题的特征建立合适的运算思路解决问题;直观想象/能够通过图形直观认识数学问题, 能够用图形描述和表达熟悉的问题以启迪解决问题的思路。 【知识内容】【知识内容】 函数/基本初等函数/了解幂函数的概念, 结合函数xy , 2 xy , 3 xy , 1 xy, 5 . 0 xy 的图象了解它们的变化情况。 【试题分析】【试题分析】将点(4,2)代入幂函数yx,得到 1 2 424 ,所以 1 2 。 【例 2】在ABC 中,内角 A、B、C 所对的边分别为 a、b、c

34、,若 b =1,c=3, 0 60C , 则 A=_。 【正确答案正确答案】 0 90 【考查目标】【考查目标】基本知识和基本技能/理解或掌握普通高中数学课程式标准(实验)规定 的必修课程、选修课程系列 1 与选修课程系列 2 的相同部分内容的数学概念、性质、法则、 公式、 公理、 定理以及由其内容反映的数学思想方法; 数学运算/能够在熟悉的数学情境中, 了解运算对象,提出运算问题,根椐问题的特征建立合适的运算思路解决问题。 【知识内容】【知识内容】几何与代数/解三角形/掌握正弦定理和余弦定理,并能解决一些简单的三角形 度量问题。 【试题分析】【试题分析】由已知条件列出等式 0 13 sins

35、in60B ,求出角 0 30B ,即得角 A= 0 90。 【例 3】抛物线 2 4yx的焦点坐标为_。 【正确答案正确答案】(1,0) 【考查目标】【考查目标】基础知识和基本技能/理解或掌握普通高中数学课程式标准(实验)规定 否 n=1 M=n3 n=n+1 是 输出M M9? 开始 结束 例 14 题图 13 的必修课程、选修课程系列 1 与选修课程系列 2 的相同部分内容的数学概念、性质、法则、 公式、公理、定理以及由其内容反映的数学思想方法。 【知识内容】【知识内容】几何与代数/圆锥曲线与方程/了解双曲线、抛物线的定义、几何图形、标准方 程及简单的几何性质。 【试题分析】【试题分析】

36、抛物线 2 4yx 的焦点在 x 轴上,因为 2p=4,所以 P=2。从而焦点坐标为 (1,0)。 【例 4】如图所示,在正方体 1111 ABCDABC D中,E、F分别为棱AB和AA1的中点, 则直线EF与平面 11 ACC A所成的角等于_。 【正确答案正确答案】 0 30 【考查目标】【考查目标】逻辑推理素养/了解熟悉的数学命题的条件与结 论之间的逻辑关系,能够证明简单的数学命题并有条理地表述 论证过程;直观想象/能够通过图形直观认识数学问题,能够用 图形描述和表达熟悉的问题以启迪解决这些问题的思路。 【知识内容】【知识内容】几何与代数/立体几何初步/知道空间直线与平面 的位置关系及其

37、表示方法,直线与平面所成角。 【试题分析】【试题分析】因为EF 1 AB,所以直线 1 AB与平面 11 ACC A所成的角等于直线EF与平面 11 ACC A所成的角。连接BD,交AC于点O,则BO平面 11 ACC A,则 1 BAO为所求 角。因为 1 1 2 BOAB ,所以 1 BAO 0 30。 【例 5】甲、乙两名射击选手射击 10 次,经计算得各自成绩的标准分别为S甲.29 和S乙 1.92,则_的成绩较稳定。(填“甲”或“乙”) 【正确答案正确答案】甲 【考查目标】【考查目标】基础知识和基本技能/理解或掌握普通高中数学课程式标准(实验)规定 的必修课程、选修课程系列 1 与选

38、修课程系列 2 的相同部分内容的数学概念、性质、法则、 公式、公理、定理以及由其内容反映的数学思想方法。 【知识内容】【知识内容】几何与代数/统计/会用样本数据中提取基本数字特征(如平均数、标准差), 并给出合理的解释。 【试题分析】【试题分析】根据标准差的意义,数值越小的样本越稳定。 【例 6】函数 3 32Rf xxxx的极小值是 【正确答案正确答案】0 【考查目标】【考查目标】数学运算素养/能够在熟悉的数学情境中,了解运算对象,提出运算问题,根 椐问题的特征建立合适的运算思路解决问题 【知识内容】【知识内容】函数/导数及其应用/会用导数能求出基本初等函数的极大值、极小值。 【试题分析】【

39、试题分析】先求出导函数 2 31Rfxxx,得到两个极值点,一个是极大值点 例4图 F E D1 C1 B1 A1 D C B A 14 1x ,一个是极小值点1x ,再代入原式得出极小值是 0。 【例 7】若将一粒小黄豆随机撒到如图所示的一个八等分圆盘里,则该黄豆落到阴影部分的 概率是 【正确答案正确答案】 1 4 【考查目标】【考查目标】基础知识和基本技能/能按照一定程序与步骤进行简单的数学 运算、数据处理和图表绘制;数据分析素养/能够在熟悉的情境中了解随机 现象,能够对熟悉的概率问题选择合适的概率模型解决问题。 【知识内容】【知识内容】概率与统计/概率/了解几何概型的意义,初步会求几何概

40、型的 概率。 【试题分析】【试题分析】此题只要能看出图中有多少等份,阴影部分占了几份就能答对。因此由题知: 图中阴影部分占整个圆的 21 84 ,所以所求概率为 1 4 。 【例 8】若焦点在x轴上的椭圆 22 1 2 xy m 的离心率为 1 2 ,则m的值为_。 【正确答案正确答案】 3 2 【考查目标】【考查目标】基础知识和基本技能/理解或掌握普通高中数学课程式标准(实验)规定 的必修课程、选修课程系列 1 与选修课程系列 2 的相同部分内容的数学概念、性质、法则、 公式、公理、定理以及由其内容反映的数学思想方法;数学运算/能够在熟悉的情境中,了 解运算对象,提出运算问题,根据问题的特征

41、建立合适的运算思路解决问题。 【知识内容】【知识内容】几何与代数/圆锥曲线与方程/掌握椭圆的定义、几何图形、标准方程及简单的 几何性质。 【试题分析】【试题分析】因为椭圆的焦点在x轴上,所以 22 2 22 1 11 24 cbm e aa ,解得 3 2 m 。 (三三)解答题解答题 【例 1】某种零件按质量标准分为五个等级现从一批该零件中随机抽取 20 个,对其等级 进行统计分析,得到频率分布表如下: 等级 一 二 三 四 五 频率 0.05 0.35 m 0.35 0.10 (1)求 m; (2)从等级为三和五的所有零件中,任意抽 取 2 个,求抽取的 2 个零件等级恰好相同的概 率。

42、【正确答案正确答案】 解:解:(1)由频率分布表,得 0.050.35m0.350.101,即 m0.15 (2)由()得等级为三的零件有 3 个,记作 x1,x2,x3;等级为五的零件有 2 个,记作 y1,y2从 x1,x2, x3,y1,y2中任意抽取 2 个零件,所有可能的结果为: (x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1, y2),共计 10 种 记事件 A 为“从零件 x1,x2,x3,y1,y2中任取 2 件,其等级相等”,则 A 包含的基本事件 15 为(x1,x2),

43、(x1,x3),(x2,x3),(y1,y2)共 4 个,故所求概率为 P(A) 4 100.4 【考查目标】【考查目标】数据分析素养/能够对熟悉的统计问题,选择合适的抽样方法收集数据,掌握 描述、刻画、分析数据的基本统计方法,解决问题;数学运算/能够了解运算法则及其适用 范围,正确进行运算,能够运用运算验证简单的数学结论,能够用运算的结果说明问题。 【知识内容】【知识内容】概率与统计/会用样本的频率分布估计总体分布,会用样本的基本数字特征估 计总体的基本数字特征; 理解古典概型及其概率计算公式, 会用列举法计算一些随机事件所 含的基本事件及事件发生的概率。 【试题分析】【试题分析】利用频率分

44、布表分析,列出方程先求出 m 的值;再利用列举法算出基本事件 的个数,运用古典概率公式求出概率。 【例 2】已知数列 n a为等差数列,其中 2 1a , 3 3a ,求此数列的前 4 项之和 4 S。 【正确答案正确答案】 解:解:设数列 n a 的公差为 d,因为因为d = a3 -a2 = 3-1=2, 12 121aad , 所以 41 43 441628 2 Sad 。 【考查目标】【考查目标】数学运算素养/能够在熟悉的数学情境中,了解运算对象,提出运算问题,根 椐问题的特征建立合适的运算思路解决问题。 【知识内容】【知识内容】函数/数列/会用等差数列的通项公式、前 n 项和公式解决

45、简单的问题。 【试题分析】【试题分析】先利用等差数列通项公式求出公差与首项,再运用前 n 项和公式求出 4 S。 【例 3】如图,在三棱锥 ABCD 中,ACAD,BCBD,试在 CD 上确定 一点 E,使得 CD平面 ABE,并证明你的结论。 【正确答案正确答案】 解:解:取 CD 的中点 E,则点 E 为所求。 证明:证明:连接 AE,BE。因为 ACAD,所以 AECD。因为 BCBD, 所以 BECD。又因为 AEBE=E,所以 CD平面 ABE。 【考查目标】【考查目标】直观想象素养/能够通过图形直观认识数学问题,能够用 图形描述和表达熟悉的问题以启迪解决这些问题的思路;逻辑推理素

46、养/能够在熟悉的情境中,用归纳或类比的方法发现数量或图形性质、 数量关系或图形关系。 【知识内容】【知识内容】几何与代数/立体几何初步/初步应用直线与平面垂直的判定方法和性质研究直 线与平面间的垂直关系。 【试题分析】【试题分析】此题利用线面垂直的判定定理,通过先证线线垂直即由已知的:ACAD、BC BD 及中点 E 得出平面 ACD 与平面 BCD 均为等腰三角形,推出 CD 与两条相交直线 AE 和 BE 垂直,从而得出线面垂直。 【例 4】已知圆心为 C(1,1)的圆 C 经过点 M(1,2) (1)求圆 C 的方程; (2) 若直线 xym0 与圆 C 交于 A、 B 两点, 且ABC

47、 是直角三角形, 求实数 m 的值 【正确答案正确答案】 解:解:(1)圆的半径 r|CM| (11)2+(21)21,圆 C 的方程为(x1)2(y1)21 (2)由题意可知,|CA|CB|1,且ACB90。 例3图 E D C B A 16 圆心 C 到直线 xym0 的距离为 2 2 ,即|11m| 1212 2 2 。 解得 m1 或 m3 【考查目标】【考查目标】数学运算素养/能够通过图形直观认识数学问题,能够用图形描述和表达熟悉 的问题以启迪解决这些问题的思路; 能够在熟悉的情境中, 用归纳或类比的方法发现数量或 图形性质、数量关系或图形关系。 【知识内容】【知识内容】几何与代数/

48、解析几何初步/掌握确定圆的几何要素,掌握圆的标准方程;会根 椐给定的直线、圆的方程,利用代数方法和几何方法判断直线与圆、圆与圆的位置关系。 【试题分析】【试题分析】利用已知条件中圆心坐标与圆过点 M 在同一直线上,先求出圆的半径,从而 写出圆的标准方程;再利用直线与已知圆相交,再根椐点到直线的距离公式,列出方程,从 而求出 m 的值。 【例 5】如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为 24m,设熊猫 居室的一面墙 AD 的长为 x m(26)x。 (1)用 x 表示墙 AB 的长。 (2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米 1000 元,请将墙壁 的总造价 y(元)表示为 x(m)的函数。 (3)当 x 为何值时,墙壁的总造价最低? 【正确答案正确答案】 解:解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁