《机械优化设计上机实践报告.docx》由会员分享,可在线阅读,更多相关《机械优化设计上机实践报告.docx(48页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第48页 共48页机械优化设计上机实践报告班 级 : 机械(茅以升)101姓 名 : 学 号 : 1004010510 成 绩 : 指导教师 : 张 迎 辉 日 期 : 2013.11.20 1 一维搜索方法上机实践报告1、写出所选择的一维搜索算法的基本过程、原理(可附流程图说明)。 (一)进退法1. 算法原理进退法是用来确定搜索区间(包含极小值点的区间)的算法,其理论依据是:为单谷函数(只有一个极值点),且为其极小值点的一个搜索区间,对于任意,如果,则为极小值的搜索区间,如果,则为极小值的搜索区间。因此,在给定初始点,及初始搜
2、索步长的情况下,首先以初始步长向前搜索一步,计算。(1) 如果则可知搜索区间为,其中待求,为确定,后退一步计算,为缩小系数,且,直接找到合适的,使得,从而确定搜索区间。(2) 如果则可知搜索区间为,其中待求,为确定,前进一步计算,为放大系数,且,知道找到合适的,使得,从而确定搜索区间。2. 算法步骤用进退法求一维无约束问题的搜索区间(包含极小值点的区间)的基本算法步骤如下:(1) 给定初始点,初始步长,令,;(2) 令,置;(3) 若,则转步骤(4),否则转步骤(5);(4) 令,令,转步骤(2);(5) 若,则转步骤(6)否则转步骤(7);(6) 令,转步骤(2);(7) 令,停止计算,极小
3、值点包含于区间 (二)黄金分割法1、黄金分割法基本思路:黄金分割法适用于a,b区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间a,b内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。2 黄金分割法的基本原理一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函
4、数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。图1 黄金分割法是用于一元函数f(x)在给定初始区间a,b内搜索极小点*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数6,即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间7。具体步骤是:在区间a,b内取点:a1 ,a2 把a
5、,b分为三段。如果f(a1)f(a2),令a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)=y2a1=b-r*(b-a) y1=f(a1)a2=a+r*(b-a) y2=f(a2)否是(b-a)/b和 (y2-y1)/y2?否是算例1:minf(x)= x*x+2*x(1)C+程序如下:#include #include #define f(x) x*x+2*xdouble calc(double *a,double *b,double e,int *n) double x1,x2,s; if(fabs(*b-*a)f(x2) *a=x1; else *b=x2; *n=*n+1
6、; s=calc(a,b,e,n); return s; main() double s,a,b,e; int n=0; scanf(%lf %lf %lf,&a,&b,&e); s=calc(&a,&b,e,&n); printf(a=%lf,b=%lf,s=%lf,n=%dn,a,b,s,n); 2、程序运行结果:算例2:minf=x2-10*x+36 理论最优解:x*=5.0,f(x*)=11.0(1)MATLAB程序清单:function f=myfun_yi(x)f=x2-10*x+36 fminbnd(myfun_yi,1,12)(2)运行结果: fminbnd(myfun_yi,
7、1,12)f = 11.0407f = 18.8309f = 12.9691f = 11f = 11.0000f = 11.0000ans = 5(3)结果分析:由迭代程序f=11.0,ans=5,与理论结果相等算例3:minf=x4-5*x3+4*x2-6*x+60 理论最优解:x*=3.2796,f(x*)=22.6590(1)MATLAB程序清单:function f=myfun_yi(x)f=x4-5*x3+4*x2-6*x+60 fminbnd(myfun_yi,1,12)(2)运行结果: fminbnd(myfun_yi,1,12)f = 165.3948f = 1.5836e+0
8、3f = 24.8730f = 35.9194f = 23.9089f = 22.7621f = 31.7507f = 22.6673f = 22.6594f = 22.6590f = 22.6590f = 22.6590f = 22.6590ans = 3.2796(3)结果分析:由迭代程序得f =22.659,ans =3.2796,与理论最优解相等2 无约束优化搜索方法上机实践报告1、写出所选择的无约束优化搜索算法的基本过程、原理(可附流程图说明)。 鲍威尔改进方法鲍威尔(Powell)法是直接利用函数值来构造共轭方向的一种方法 在鲍威尔基本算法中,每一轮迭代都用连结始点和终点所产生出的
9、搜索方向去替换原向量组中的第一个向量,而不管它的“好坏”,这是产生向量组线性相关的原因所在。 在改进的算法中首先判断原向量组是否需要替换。如果需要替换,还要进一步判断原向量组中哪个向量最坏,然后再用新产生的向量替换这个最坏的向量,以保证逐次生成共轭方向。2、程序计算结果分析:中间各步骤的结果分析及与理论计算结果分析对比。算例1:minf=4*(x(1)-5)2+(x(2)-6)2 初始点:x0=8;9,f(x0)=45 最优解:x*=5;6,f(x*)=0(1)MATLAB程序清单:function f=myfun_wuyueshu(x)f=4*(x(1)-5)2+(x(2)-6)2 x,fv
10、al=fminunc(myfun_wuyueshu,x0)(2)运行结果:f = 45Warning: Gradient must be provided for trust-region algorithm; using line-search algorithm instead. In fminunc at 367 f = 45.0000f = 45.0000f = 23.5625f = 23.5625f = 23.5625f = 2.6958f = 2.6958f = 2.6958f = 1.3788f = 1.3788f = 1.3788f = 0.0054f = 0.0054f =
11、0.0054f = 6.4975e-05f = 6.4973e-05f = 6.4975e-05f = 6.1579e-09f = 6.1522e-09f = 6.1443e-09f = 1.7876e-12f = 1.8627e-12f = 1.5586e-12Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function tolerance.x = 5.0000 6.0000fval = 1.7876e-12(3
12、)结果分析:由迭代程序得x = 5.0000; 6.0000,fval =1.7876e-12,与理论最优解相等。算例2:minf=(x(1)2+x(2)-11)2+(x(1)+x(2)2-7)2 初始点:x0=1;1,f(x0)=106 最优解:x*=3;2,f(x*)=0(1)MATLAB程序清单:function f=myfun_wuyueshu(x)f=(x(1)2+x(2)-11)2+(x(1)+x(2)2-7)2 x,fval=fminunc(myfun_wuyueshu,x0)(2)运行结果: x0=1;1x0 = 1 1 x,fval=fminunc(myfun_wuyuesh
13、u,x0)f = 106Warning: Gradient must be provided for trust-region algorithm; using line-search algorithm instead. In fminunc at 367 f = 106.0000f = 106.0000f = 29.5430f = 29.5430f = 29.5430f = 1.7450e+04f = 1.7450e+04f = 1.7450e+04f = 90.3661f = 90.3661f = 90.3661f = 0.3575f = 0.3575f = 0.3575f = 0.01
14、79f = 0.0179f = 0.0179f = 0.0064f = 0.0064f = 0.0064f = 1.0048e-06f = 1.0044e-06f = 1.0049e-06f = 4.8639e-09f = 4.8567e-09f = 4.8781e-09f = 5.2125e-12f = 5.8703e-12f = 5.7870e-12Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function
15、tolerance.x = 3.0000 2.0000fval = 5.2125e-12(3)结果分析:由迭代程序得x=3;2,fval = 5.2125e-12,与理论最优解相等算例3:ff=x0*x0+2*x1*x1-4*x0-2*x0*x1;(1)鲍威尔改进算法C+程序清单:#include stdio.h#include stdlib.h#include math.hdouble objf(double x)double ff;ff=x0*x0+2*x1*x1-4*x0-2*x0*x1;return(ff);void jtf(double x0 ,double h0,double s
16、,int n,double a ,double b )int i; double *x3,h,f1,f2,f3; for (i=0;i3;i+) xi=(double *)malloc (n*sizeof(double); h=h0; for(i=0;in;i+)*(x0+i)=x0i; f1=objf(x0); for(i=0;i=f1) h= -h0; for (i=0;in;i+)*(x2+i)=*(x0+i); f3=f1; for(i=0;in;i+) *(x0+i)= *(x1+i);*(x1+i)= *(x2+i); f1=f2; f2=f3;for(;)h=2. *h;for(
17、i=0;in;i+) *(x2+i)=* (x1+i) +h*si;f3= objf(x2);if(f2f3) break;else for(i=0;in;i+) *(x0+i)= *(x1+i);*(x1+i)= *(x2+i); f1=f2; f2=f3; if(h0. )for(i=0;in;i+) ai=*(x2+i); bi=*(x0+i); else for(i=0;in;i+) ai=*(x0+i); bi=*(x2+i); for(i=0;i3;i+) free(xi);double gold(double a,double b,double eps,int n,double
18、xx) int i; double f1,f2,*x2,ff,q,w; for(i=0;i2;i+) xi=(double*)malloc (n*sizeof(double); for(i=0;if2) for(i=0;in;i+) bi=*(x0+i); *(x0+i)=*(x1+i); f1=f2; for(i=0;in;i+) *(x1+i)=ai+0.382*(bi-ai); f2=objf(x1); else for(i=0;in;i+) ai=*(x1+i); *(x1+i)=*(x0+i); f2=f1; for(i=0;in;i+) *(x0+i)=ai+0.618*(bi-a
19、i); f1=objf(x0); q=0; for(i=0;ieps); for(i=0;in;i+) xxi=0.5*(ai+bi); ff=objf(xx); for(i=0;i2;i+) free(xi); return(ff);double oneoptim(double x0,double s,double h0,double epsg,int n,double x)double *a,*b,ff;a=(double *)malloc(n*sizeof(double);b=(double *)malloc(n*sizeof(double);jtf(x0,h0,s,n,a,b);ff=
20、gold(a,b,epsg,n,x);free(a);free(b);return(ff);double powell(double p,double h0,double eps,double epsg,int n,double x)int i,j,m;double *xx4,*ss,*s;double f,f0,f1,f2,f3,fx,dlt,df,sdx,q,d;ss=(double *)malloc(n*(n+1)*sizeof(double);s=(double *)malloc(n*sizeof(double);for (i=0;in;i+)for (j=0;j=n;j+)*(ss+
21、i*(n+1)+j)=0;*(ss+i*(n+1)+i)=1;for (i=0;i4;i+)xxi=(double *)malloc(n*sizeof(double);for (i=0;in;i+)*(xx0+i)=pi;for(;)for (i=0;in;i+)*(xx1+i)=*(xx0+i);xi=*(xx1+i);f0=f1=objf(x);dlt=-1;for (j=0;jn;j+)for (i=0;idlt)dlt=df;m=j;sdx=0.;for (i=0;in;i+)sdx=sdx+fabs(xi-(*(xx1+i);if(sdxeps)free(ss);free(s);fo
22、r (i=0;i4;i+)free(xxi);return(f);for (i=0;in;i+)*(xx2+i)=xi;f2=f;for (i=0;in;i+)*(xx3+i)=2.*(*(xx2+i)-(*(xx1+i);xi=*(xx3+i);fx=objf(x);f3=fx;q=(f1-2*f2+f3)*(f1-f2-dlt)*(f1-f2-dlt);d=0.5*dlt*(f1-f3)*(f1-f3);if(f3f1)|(qd)if(f2=f3)for (i=0;in;i+)*(xx0+i)=*(xx2+i);elsefor (i=0;in;i+)*(xx0+i)=*(xx3+i);el
23、sefor (i=0;in;i+)*(ss+(i+1)*(n+1)=xi-(*(xx1+i);*(s+i)=*(ss+(i+1)*(n+1);f=oneoptim(xx0,s,h0,epsg,n,x);for(i=0;in;i+)*(xx0+i)=xi;for (j=m+1;j=n;j+)for (i=0;in;i+)*(ss+i*(n+1)+j-1)=*(ss+i*(n+1)+j);void main()double p=1,1;double ff,x2,x1,x2,f;ff=powell(p,0.3,0.001,0.0001,2,x);printf(shuchuzuiyoujie:n);x
24、1=x1;x2=x2;f=ff;printf(x1=%f,x2=%f,f=%fn,x1,x2,f);getchar();(2)运行结果为:3约束优化搜索方法上机实践报告1、写出所选择的约束优化搜索算法的基本过程、原理(可附流程图说明)。2、程序计算结果分析:中间各步骤的结果分析及与理论计算结果分析对比。算例1:minf=(x(1)-2)2+(x(2)-1)2; s.t g1(x)=x(1)2-x(2)=0 g2(x)=x(1)+x(2)-2 x,fval=fmincon(myfun_constrain,x0,A,b,mycon)(2) 运行结果: A=-1,0;0,-1b=0;0x0=3;3A
25、 = -1 0 0 -1b = 0 0x0 = 3 3 x,fval=fmincon(myfun_constrain,x0,A,b,mycon)Warning: The default trust-region-reflective algorithm does not solve problems with the constraints you havespecified. FMINCON will use the active-set algorithm instead. For information on applicable algorithms, seeChoosing the
26、Algorithm in the documentation. In fmincon at 486f = 5c = 6 4ceq = f = 5.0000c = 6.0000 4.0000ceq = f = 5.0000c = 6.0000 4.0000ceq = f = 2.0000c = 1.0000 -1.0000ceq = f = 2.0000c = 1.0000 -1.0000ceq = f = 2.0000c = 1.0000 -1.0000ceq = f = 1.0000c = 1.0e-15 * 0.9992 0.4441ceq = f = 1.0000c = 1.0e-07
27、* 0.2980 0.1490ceq = f = 1.0000c = 1.0e-07 * -0.1490 0.1490ceq = Local minimum found that satisfies the constraints.Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the function tolerance,and constraints are satisfied to w
28、ithin the default value of the constraint tolerance.Active inequalities (to within options.TolCon = 1e-06): lower upper ineqlin ineqnonlin 1 2x = 1.0000 1.0000fval = 1.0000 (3)结果分析:由迭代程序得x =1.0000; 1.0000,fval =1.0000,与理论最优解相等 算例2.minf=1000-x(1)2-2*x(2)2-x(3)2-x(1)*x(2)-x(1)*x(3); S.t g1(x)=x(1)2+x(
29、2)2+x(3)2-25=0 g2(x)8*x(1)+14*x(2)+7*x(3)-56=0 g3(x)=-x(1)=0 g4(x)=-x(2)=0 g5(x)=-x(3) x,fval=fmincon(myfun_constrain,x0,A,b,mycon)(2)运行结果 A=-1,0,0;0,-1,0;0,0,-1b=0;0;0x0=2;2;2A = -1 0 0 0 -1 0 0 0 -1b = 0 0 0x0 = 2 2 2 x,fval=fmincon(myfun_constrain,x0,A,b,mycon)Warning: The default trust-region-re
30、flective algorithm does not solve problems with the constraints you havespecified. FMINCON will use the active-set algorithm instead. For information on applicable algorithms, seeChoosing the Algorithm in the documentation. In fmincon at 486c = -13 2ceq = c = -13.0000 2.0000ceq = c = -13.0000 2.0000ceq = c = -13.0000 2.0000ceq = c = -5.9320 0ceq = c = -5.9320 0.0000ceq = c = -5.9320 0.0000ceq = c = -5.9320 0.0000ceq = c = 1.1562 0.0000ceq = c = 1.1562 0.0000ceq = c = 1.1562 0.0000ceq = c = 1.1562 0.0000ceq = c = 31.5713 0.0000ceq = c =