《2014年中考数学试题解析分类汇编07 分式与分式方程 .doc》由会员分享,可在线阅读,更多相关《2014年中考数学试题解析分类汇编07 分式与分式方程 .doc(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、分式与分式方程一、选择题1. ( 2014广西贺州,第2题3分)分式有意义,则x的取值范围是()Ax1Bx=1Cx1Dx=1考点:分式有意义的条件分析:根据分式有意义的条件:分母不等于0,即可求解解答:解:根据题意得:x10,解得:x1故选A点评:本题主要考查了分式有意义的条件,正确理解条件是解题的关键2. ( 2014广西贺州,第12题3分)张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x0)的最小值是2”其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(00),解得x=1,
2、这时矩形的周长2(x+)=4最小,因此x+(x0)的最小值是2模仿张华的推导,你求得式子(x0)的最小值是()A2B1C6D10考点:分式的混合运算;完全平方公式专题:计算题分析:根据题意求出所求式子的最小值即可解答:解:得到x0,得到=x+2=6,则原式的最小值为6故选C点评:此题考查了分式的混合运算,弄清题意是解本题的关键3(2014温州,第4题4分)要使分式有意义,则x的取值应满足()Ax2Bx1Cx=2Dx=1考点:分式有意义的条件分析:根据分式有意义,分母不等于0列式计算即可得解解答:解:由题意得,x20,解得x2故选A点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概
3、念:(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零4.(2014毕节地区,第10题3分)若分式的值为零,则x的值为( )A0B1C1D1 考点:分式的值为零的条件专题:计算题分析:分式的值是0的条件是:分子为0,分母不为0,由此条件解出x解答:解:由x21=0,得x=1当x=1时,x1=0,故x=1不合题意;当x=1时,x1=20,所以x=1时分式的值为0故选C点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点 5.(2014孝感,第6题3分)分式方程的解为()Ax=Bx=Cx=D考点:解分式方程专题:计算题分析:分式方程去分母
4、转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:3x=2,解得:x=,经检验x=是分式方程的解故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根6(2014浙江金华,第5题4分)在式子中,x可以取2和3的是【 】A B C D【答案】C【解析】试题分析:根据二次根式被开方数必须是非负数和分式分母不为0的条件,在式子,7. (2014湘潭,第4题,3分)分式方程的解为()A1B2C3D4考点:解分式方程分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式
5、方程的解解答:解:去分母得:5x=3x+6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根8.(2014呼和浩特,第8题3分)下列运算正确的是()A=B=a3C(+)2()=D(a)9a3=(a)6考点:分式的混合运算;同底数幂的除法;二次根式的混合运算分析:分别根据二次根式混合运算的法则、分式混合运算的法则、同底幂的除法法则对各选项进行逐一计算即可解答:解:A、原式=3=3,故本选项错误;B、原式=|a|3,故本选项错误;C、原式=,故本选项正确;D、原式
6、=a9a3=a6,故本选项错误x.k.b.1故选C点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键9.(2014德州,第11题3分)分式方程1=的解是()Ax=1Bx=1+Cx=2D无解考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:x(x+2)(x1)(x+2)=3,去括号得:x2+2xx2x+2=3,解得:x=1,经检验x=1是增根,分式方程无解故选D点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根二.填空题1
7、. ( 2014安徽省,第13题5分)方程=3的解是x=6考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:4x12=3x6,解得:x=6,经检验x=6是分式方程的解故答案为:6点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根2. ( 2014福建泉州,第10题4分)计算:+=1考点:分式的加减法分析:根据同分母分式相加,分母不变分子相加,可得答案解答:解:原式=1,故答案为:1点评:本题考查了分式的加减,同分母分式相加,分母不变分子相加3
8、.(2014云南昆明,第13题3分)要使分式有意义,则的取值范围是 .考点:分式有意义的条件分析:根据分式有意义的条件可以求出的取值范围解答:解:由分式有意义的条件得:故填点评:本题考查了分式有意义的条件:分母不为0.4(2014浙江金华,第12题4分)分式方程的解是 【答案】.【解析】5(2014浙江宁波,第14题4分)方程=的根x= 1 考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:x=1,经检验x=1是分式方程的解故答案为:1点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方
9、程转化为整式方程求解解分式方程一定注意要验根 6. (2014益阳,第10题,4分)分式方程=的解为x=9考点:解分式方程分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:4x=3x9,解得:x=9,经检验x=9是分式方程的解故答案为:x=9点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根7. (2014泰州,第14题,3分)已知a2+3ab+b2=0(a0,b0),则代数式+的值等于3考点:分式的化简求值分析:将a2+3ab+b2=0转化为a2+b2=3ab,原式化
10、为=,约分即可解答:解:a2+3ab+b2=0,a2+b2=3ab,原式=3故答案为3点评:本题考查了分式的化简求值,通分后整体代入是解题的关键8(2014年山东泰安,第21题4分)化简(1+)的结果为分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形约分即可得到结果解:原式=x1故答案为:x1点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键三.解答题1. ( 2014广东,第18题6分)先化简,再求值:(+)(x21),其中x=考点:分式的化简求值分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可解答:解:原式=(x21)=2x+
11、2+x1=3x+1,当x=时,原式=点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键2. ( 2014广东,第21题7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%(1)求这款空调每台的进价(利润率=)(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?考点:分式方程的应用分析:(1)利用利润率=这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可解答:解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解答:这款空调每台的进价为1
12、200元;(2)商场销售这款空调机100台的盈利为:10012009%=10800元点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法3. ( 2014珠海,第13题6分)化简:(a2+3a)考点:分式的混合运算专题:计算题分析:原式第二项约分后,去括号合并即可得到结果解答:解:原式=a(a+3)=a(a+3)=a点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键4. ( 2014广西贺州,第19题(2)4分)(2)先化简,再求值:(a2b+ab),其中a=+1,b=1考点:分式的化简求值.专题:计算题分析:原式利用除法法则变形,约分得到最简结果,将a与b的值代入计算即可
13、求出值解答:解:原式=ab(a+1)=ab,当a=+1,b=1时,原式=31=2点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键新 课 标 5. ( 2014广西贺州,第23题7分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度考点:分式方程的应用分析:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依据等量关系:马小虎走600米的时间=爸爸走1600米的时间+10分钟解答:解:设马小虎的速度为x米/分,则爸爸的速度是2x米
14、/分,依题意得=+10,解得 x=80经检验,x=80是原方程的根答:马小虎的速度是80米/分点评:本题考查了分式方程的应用分析题意,找到合适的等量关系是解决问题的关键6. ( 2014广西玉林市、防城港市,第20题6分)先化简,再求值:,其中x=1考点:分式的化简求值专题:计算题分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将x的值代入计算即可求出值解答:解:原式=,当x=1时,原式=点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键7(2014年四川资阳,第17题7分)先化简,再求值:(a+)(a2+),其中,a满足a2=0考点:分式的化简求值专题:计算题分析
15、:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值解答:解:原式=,当a2=0,即a=2时,原式=3点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键8(2014新疆,第17题8分)解分式方程:+=1考点:解分式方程分析:根据解分式方程的一般步骤,可得分式方程的解解答:解:方程两边都乘以(x+3)(x3),得来源:学|科|网Z|X|X|K3+x(x+3)=x293+x2+3x=x29解得x=4检验:把x=4代入(x+3)(x3)0,x=4是原分式方程的解点评:本题考查了解分式方程,先求出整式方程的解,检验后判定分式
16、方程解的情况9(2014年云南省,第15题5分)化简求值:(),其中x=考点:分式的化简求值专题:计算题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将x的值代入计算即可求出值解答:解:原式=x+1,当x=时,原式=点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键10(2014年云南省,第20题6分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元求第一批盒装花每盒的进价是多少元?考点:分式方程的应用
17、分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量2可得方程解答:解:设第一批盒装花的进价是x元/盒,则2=,解得 x=30经检验,x=30是原方程的根答:第一批盒装花每盒的进价是30元点评:本题考查了分式方程的应用注意,分式方程需要验根,这是易错的地方11(2014舟山,第18题6分)解方程:=1考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:x(x1)4=x21,去括号得:x2x4=x21,解得:x=3,经检验x=3是分式方程
18、的解点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解12.(2014年广东汕尾,第23题11分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面
19、积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设至少应安排甲队工作x天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是502=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+0.258,解得:x10,答:至少应安排甲队工作10天点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验
20、13.(2014毕节地区,第22题8分)先化简,再求值:(),其中a2+a2=0考点:分式的化简求值;解一元二次方程因式分解法分析:先把原分式进行化简,再求a2+a2=0的解,代入求值即可解答:解:解a2+a2=0得a1=1,a2=2,a10,a1,a=2,原式=,原式=点评:本题考查了分式的化简求值以及因式分解法求一元二次方程的解,是重点内容要熟练掌握14.(2014武汉,第17题6分)解方程:=考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:2x=3x6,解得:x=6,经检验x=6是分式方程的解点评:
21、此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根15.(2014襄阳,第13题3分)计算:=考点:分式的乘除法专题:计算题分析:原式利用除法法则变形,约分即可得到结果解答:解:原式=故答案为:点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键x_k_b_116.(2014襄阳,第19题6分)甲、乙两座城市的中心火车站A,B两站相距360km一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站求动车和特快列车的平均速度各是
22、多少?考点:分式方程的应用专题:应用题分析:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360135)km所用的时间相同,列方程求解解答:解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解x+54=144答:设特快列车的平均速度为90km/h,则动车的速度为144km/h点评:本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km与特快列车行驶(360135)km所用的时间相同17.(2014邵阳,第20
23、题8分)先化简,再求值:()(x1),其中x=2考点:分式的化简求值专题:计算题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将x的值代入计算即可求出值解答:解:原式=(x1)=,当x=2时,原式=点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键18(2014四川自贡,第21题10分)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分
24、钟,要完成整理这批器材,李老师至少要工作多少分钟?考点:分式方程的应用;一元一次不等式的应用专题:应用题分析:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;(2)根据王师傅的工作时间不能超过30分钟,列出不等式求解解答:解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,由题意,得:20(+)+20=1,解得:x=80,经检验得:x=80是原方程的根答:王师傅单独整理这批实验器材需要80分钟(2)设李老师要工作y分钟,由题意,得:(1)30,解得
25、:y25答:李老师至少要工作25分钟点评:本题考查了分式方程的应用及一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系及等量关系19.(2014云南昆明,第17题5分)先化简,再求值:,其中.考点:分式的化简求值。分析:根据分式的加法、乘法、分解因式等运算,求出结果代入求出即可解答:解:原式= = =当时,原式=点评:本题考查了分式的化简求值的应用,主要考查学生的化简能力.来源:学+科+网Z+X+X+K20. (2014湘潭,第18题)先化简,在求值:(+),其中x=2考点:分式的化简求值分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果解
26、答:解:原式=+=,当x=2时,原式=点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键21. (2014益阳,第16题,8分)先化简,再求值:(+2)(x2)+(x1)2,其中x=考点:分式的化简求值分析:原式第一项利用乘法分配律计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算即可求出值解答:解:原式=1+2x4+x22x+1=x22,当x=时,原式=32=1点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键22. (2014株洲,第18题,4分)先化简,再求值:3(x1),其中x=2考点:分式的化简求值分析:原式第一项约分,去括号合并得到最
27、简结果,将x的值代入计算即可求出值解答:解:原式=3x+3=2x+23x+3=5x,当x=2时,原式=52=3点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键23. (2014年江苏南京,第18题)先化简,再求值:,其中a=1考点:分式的化简求值分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值解答:原式=,当a=1时,原式=点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键24.(2014泰州,第18题,8分)先化简,再求值:(1),其中x满足x2x1=0考点:分式的化简求值分析:原式第一项括号中两项通分并利用同分母分式的减法
28、法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值解答:解:原式=x=,x2x1=0,x2=x+1,则原式=1点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键25. (2014扬州,第19题,8分)(1)计算:(3.14)0+()22sin30;(2)化简:考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题分析:(1)原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项利
29、用同分母分式的减法法则计算即可得到结果解答:解:(1)原式=1+41=4;(2)原式=点评:此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则是解本题的关键26. (2014扬州,第24题,10分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务原来每天制作多少件?考点:分式方程的应用分析:设原来每天制作x件,根据原来用的时间现在用的时间=10,列出方程,求出x的值,再进行检验即可解答:解:设原来每天制作x件,根据题意得:=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件点评:此题考查了分式方
30、程的应用,分析题意,找到合适的等量关系是解决问题的关键,本题的等量关系是原来用的时间现在用的时间=1027. (2014扬州,第26题,10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=b(1)已知T(1,1)=2,T(4,2)=1求a,b的值;若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?考点:分式的混合运算;解二元一次方程组;一元一次不等式组的整数解分析:(1)已知两对值代
31、入T中计算求出a与b的值;根据题中新定义化简已知不等式,根据不等式组恰好有3个整数解,求出p的范围即可;(2)由T(x,y)=T(y,x)列出关系式,整理后即可确定出a与b的关系式解答:解:(1)根据题意得:T(1,1)=2,即ab=2;T=(4,2)=1,即2a+b=5,解得:a=1,b=3;根据题意得:,由得:m;由得:m,不等式组的解集为m,不等式组恰好有3个整数解,即m=0,1,2,23,解得:2p;(2)由T(x,y)=T(y,x),得到=,整理得:(x2y2)(2ba)=0,T(x,y)=T(y,x)对任意实数x,y都成立,2ba=0,即a=2b点评:此题考查了分式的混合运算,解二
32、元一次方程组,以及一元一次不等式组的整数解,弄清题中的新定义是解本题的关键28. (2014株洲,第18题,4分)先化简,再求值:3(x1),其中x=2考点:分式的化简求值分析:原式第一项约分,去括号合并得到最简结果,将x的值代入计算即可求出值解答:解:原式=3x+3=2x+23x+3=5x,当x=2时,原式=52=3点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键29.(2014益阳,第16题,8分)先化简,再求值:(+2)(x2)+(x1)2,其中x=考点:分式的化简求值分析:原式第一项利用乘法分配律计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算即
33、可求出值解答:解:原式=1+2x4+x22x+1=x22,当x=时,原式=32=1点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键30.(2014呼和浩特,第17题5分)计算(2)解方程:=0考点:解分式方程分析:(2)先去分母,化为整式方程求解即可解答:解:(2)去分母,得3x26xx22x=0,解得x1=0,x2=4,经检验:x=0是增根,故x=4是原方程的解点评:本题考查了解分式方程,是基础知识要熟练掌握31.(2014滨州,第20题7分)计算:考点:分式的乘除法分析:把式子中的代数式进行因式分解,再约分求解解答:解:=x点评:本题主要考查分式的乘除法,解题的关键是进行因式
34、分解再约分32.(2014德州,第18题6分)先化简,再求值:1其中a=2sin60tan45,b=1考点:分式的化简求值;特殊角的三角函数值分析:先根据分式混合运算的法则把原式进行化简,再求出a的值,把a、b的值代入进行计算即可解答:解:原式=1=1=1=,当a=2sin60tan45=21=1,b=1时,原式=点评:本题考查了分式的化简求值和特殊角的三角函数值,要熟记特殊角的三角函数值33.(2014菏泽,第16题6分)(2)已知x24x+1=0,求的值考点:分式的化简求值分析:(2)化简以后,用整体思想代入即可得到答案解答:解:(2)原式=x24x+1=0,x24x=1,原式=点评:本题
35、考查了分式的化简,学会用整体思想解答有关问题是我们学习的关键34.(2014济宁,第16题6分)已知x+y=xy,求代数式+(1x)(1y)的值考点:分式的化简求值分析:首先将所求代数式展开化简,然后整体代入即可求值解答:解:x+y=xy,+(1x)(1y)=(1xy+xy)=1+x+yxy=11+0=0点评:此题考查了代数式求值,利用了整体代入的思想,是一道基本题型35.(2014济宁,第19题8分)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成(1)求乙工程队单独完成这
36、项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x46,y52,求甲、乙两队各做了多少天?考点:分式方程的应用;一元一次不等式组的应用分析:(1)设乙工程队单独完成这项工作需要x天,由题意列出分式方程,求出x的值即可;(2)首先根据题意列出x和y的关系式,进而求出x的取值范围,结合x和y都是正整数,即可求出x和y的值解答:解:(1)设乙工程队单独完成这项工作需要x天,由题意得+36()=1,解之得x=80,经检验x=80是原方程的解答:乙工程队单独做需要80天完成;(2)因为甲队做其中一部分用了x天,乙队
37、做另一部分用了y天,所以=1,即y=80x,又x46,y52,所以,解之得42x46,因为x、y均为正整数,所以x=45,y=50,答:甲队做了45天,乙队做了50天点评:本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键此题涉及的公式:工作总量=工作效率工作时间36(2014年山东泰安,第25题)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进
38、价是每千克多少元?(2)超市销售这种干果共盈利多少元?分析:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解;(2)根据利润=售价进价,可求出结果解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2+300,解得x=5,经检验x=5是方程的解答:该种干果的第一次进价是每千克5元;(2)+6009+600980%(3000+9000)=(600+1500600)9+432012000=15009+432012000=13500+432012000=5820(元)答:超市销售这种干果共盈利5820元点评:本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键