2011高考数学复习资料汇编第11单元 排列组合与二项式定理(真题解析+最新模拟) doc--高中数学 .doc

上传人:飞**** 文档编号:41802439 上传时间:2022-09-13 格式:DOC 页数:17 大小:465.50KB
返回 下载 相关 举报
2011高考数学复习资料汇编第11单元 排列组合与二项式定理(真题解析+最新模拟) doc--高中数学 .doc_第1页
第1页 / 共17页
2011高考数学复习资料汇编第11单元 排列组合与二项式定理(真题解析+最新模拟) doc--高中数学 .doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2011高考数学复习资料汇编第11单元 排列组合与二项式定理(真题解析+最新模拟) doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2011高考数学复习资料汇编第11单元 排列组合与二项式定理(真题解析+最新模拟) doc--高中数学 .doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 永久免费组卷搜题网2011年最新高考+最新模拟排列组合与二项式定理1.【2010全国卷2理数】将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )A.12种 B.18种 C.36种 D.54种【答案】B【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.2. 【2010全国卷2文数】将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )A. 12种 B.18种 C.36种

2、 D. 54种【答案】B【解析】先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有,余下放入最后一个信封,共有3.【2010江西理数】 展开式中不含项的系数的和为( )A.-1 B.0 C.1 D.2【答案】B【解析】考查对二项式定理和二项展开式的性质,重点考查实践意识和创新能力,体现正难则反。采用赋值法,令x=1得:系数和为1,减去项系数即为所求,答案为0.4. 【2010重庆文数】某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有( )(A)30种 (

3、B)36种(C)42种 (D)48种【答案】C【解析】法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法 即=42 法二:分两类 甲、乙同组,则只能排在15日,有=6种排法 甲、乙不同组,有=36种排法,故共有42种方法5. 【2010重庆理数】某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A. 504种 B. 960种 C. 1008种 D. 1108种 【答案】C【解析】分两类:甲乙排1、2号或6、7号 共有种方法甲乙排中间,丙排7号或不排7号,

4、共有种方法故共有1008种不同的排法6. 【2010北京理数】8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为( )(A) (B) (C) (D) 【答案】A7. 【2010四川理数】由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )(A)72 (B)96 (C) 108 (D)144 【答案】C【解析】先选一个偶数字排个位,有3种选法 若5在十位或十万位,则1、3有三个位置可排,324个若5排在百位、千位或万位,则1、3只有两个位置可排,共312个算上个位偶数字的排法,共计3(2412)108个8. 【2010天津理数】如图,用四种不同颜色给图中的

5、A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用( )(A)288种 (B)264种 (C)240种 (D)168种【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。(1) B,D,E,F用四种颜色,则有种涂色方法;(2) B,D,E,F用三种颜色,则有种涂色方法;(3) B,D,E,F用两种颜色,则有种涂色方法;所以共有24+192+48=264种不同的涂色方法。9. 【2010天津理数】阅读右边的程序框图,若输出s的值为-7,则判断框内可填写( )(A)i3? (B)i4?(C)i5? (D)i6? 【答

6、案】 D【解析】 本题 主要考查条件语句与循环语句的基本应用,属于容易题。第一次执行循环体时S=1,i=3;第二次执行循环时s=-2,i=5;第三次执行循环体时s=-7.i=7,所以判断框内可填写“i6?”,选D.10. 【2010全国卷1文数】的展开式的系数是( )(A)-6 (B)-3 (C)0 (D)3【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力. 【答案】A【解析】的系数是 -12+6=-611. 【2010全国卷1理数】某校开设A类选修课3门,B类选择课4门,一

7、位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )(A) 30种 (B)35种 (C)42种 (D)48种【答案】A12. 【2010全国卷1理数】的展开式中x的系数是( )(A) -4 (B) -2 (C) 2 (D) 4【答案】C13. 【2010 四川文数】由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是( )(A)36 (B)32 (C)28 (D)24【答案】A【解析】如果5在两端,则1、2有三个位置可选,排法为224种 如果5不在两端,则1、2只有两个位置可选,312种 共计122436种14. 【2010湖北文数】现有名同学支听同时进

8、行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是( )AB. C. D.15. 【2010 湖南理数】在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10 B.11 C.12 D.1516. 【2010 湖北理数】现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是( )A152

9、B.126 C.90 D.54【答案】B【解析】分类讨论:若有2人从事司机工作,则方案有;若有1人从事司机工作,则方案有种,所以共有18+108=126种,故B正确17.【2010重庆高考四月试卷】设m、n都是不大于6的自然数,则方程表示双曲线的个数是( )A6B12 C16D15【答案】C,【解析】共有4种可能,而 与相互独立,故共有种可能。18.【2010山东省淄博市一模】若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为1,4的“同族函数”共有( )A7个 B8个 C 9个 D10【答案】C【解析】由题意,问题的关键在于确定函

10、数定义域的个数:第一步先确定函数值1的原象:因为y=x2,当y=1时,x=1或x=-1,为此有三种情况:即1,-1,1,-1;第二步,确定函数值4的原象,因为y=4时,x=2或x=-2,为此也有三种情况:2,-2,2,-2。由分步计数原理,得到:33=9个。选C。19.【2010绵阳三诊】某地为上海“世博会”招募了20名志愿者,他们的编号分别是1号、2号、19号、20号若要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的在另一组那么确保5号与14号入选并被分配到同一组的选取种数是( )A.16B.21C.24D.90【答案】B【解析】要“确保

11、5号与14号入选并被分配到同一组”,则另外两人的编号或都小于或都大于14,于是根据分类计数原理,得选取种数是,选.20【湖北省武汉市2010届高中毕业生四月调研测试】用0,1,2,3,4,5这6个数字组成无重复数字的三位数中能被9整除的个数为( ) A14B16C18D24【答案】B【解析】因为三位数被9整除,所以各个数位数字之和是9的倍数,所以分成这样几组数:0,4,5;1,3,5;2,3,4,所以共有:2ACA=16。21【湖北省襄樊五中2010届高三年级5月调研测试】用1,2,3这三个数字组成四位数,规定这三个数字必须都使用,但相同的数字不能相邻,以这样的方式组成的四位数共有( )A9个

12、 B18个 C12个 D36个【答案】B【解析】相同的数字可以是1,2,3三种情况:当相同数字中间间隔一个数字时,有CA个情况;相同数字中间间隔两个数字时,有A种情况。由分类计数原理,四位数的总数为:3CA3 A=18.22【2010广东省四月调研】现有5位同学准备一起做一项游戏,他们的身高各不相同。现在要从他们5个人当中选择出若干人组成两个小组,每个小组都至少有1人,并且要求组中最矮的那个同学的身高要比组中最高的那个同学还要高。则不同的选法共有A B C D【答案】B【解析】给5位同学按身高的不同由矮到高分别编号为1,2,3,4,5,组成集合若小组A中最高者为1,则能使B中最矮者高于A中最高

13、者的小组B是的非空子集,这样的子集有个,不同的选法有15个;若A中最高者为2,则这样的小组A有2个:、,能使B中最矮者高于A中最高者的小组B是的非空子集,这样的子集(小组B)有个,不同的选法有个;若A中最高者为3,则这样的小组A有4个:、,能使B中最矮者高于A中最高者的小组B是的非空子集,这样的子集(小组B)有个,不同的选法有个;若A中最高者为4,则这样的小组A有8个:、,能使B中最矮者高于A中最高者的小组B只有 1个,不同的选法有8个。 综上,所有不同的选法是个,选B.23【2010崇文一模】2位男生和3位女生共5位同学站成一排若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种

14、数为 ( )A36 B42 C 48 D60【答案】C【解析】不妨将5个位置从左到右编号为1,2,3,4,5于是甲只能位于2,3,4号位i) 当甲位于2号位时,3位女生必须分别位于1,3,4位或者1,4,5位于是相应的排法总数为;ii) 当甲位于3号位时,3位女生必须分别位于1,2,4位或者1,2,5位或者1,4,5或者2,4,5位于是相应的排法总数为iii) 当甲位于4号位时,情形与i)相同排法总数为综上,知本题所有的排法数为12+24+12=4824【内蒙古赤峰市2010年高三年级统一考试】某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参

15、加,则他们发言时不能相邻,那么不同的发言顺序的种数为( )A360B520C600D720【答案】C【解析】甲、乙两名同学只有一人参加时,有CCA=480;2)甲、乙两人均参加时,有CAA=120。共有600种,选C。25【2010西城一模】某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为( )A B16 C24 D32【答案】C【解析】将三个人插入五个空位中间的四个空档中,有种排法26【2010全国大联考高三第五次联考】有甲、乙、丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A1260B2025C25

16、20D5040【答案】C【解析】CCA=2520.27【2010石家庄质检(二)】一排七个座位,甲、乙两人就座,要求甲与乙之间至少有一个空位,则不同的坐法种数是( )A30 B28C42 D16【答案】A【解析】A6A=30。故选A。28【2010全国大联考高三第五次联考】设集合A=0,2,4、B=1,3,5,分别从A、B中任取2个元素组成无重复数字的四位数,其中能被5整除的数共有( )A24个B48个C64个D116个【答案】C【解析】(1)只含0不含5的有:CCA=12;(2)只含5不含0的有:CCA=12;(3)含有0和5的有:0在个位时,有CCA=24;5在个位时,有CCAA=16。共

17、有12+12+24+16=64。选C。29【2010丰台一模】从中取一个数字,从中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A B C D【答案】B【解析】从中取一个数字,从中取两个数字进行排列,然后在得到的排列中去掉首数字为的即满足题意,因此为所求30【2010甘肃省部分普通高中二联】身穿兰、黄两种颜色衣服的各有两人,身穿红色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有( )A48种B72种C78种D84种【答案】C【解析】排除法:用五个人的全排列,除去相同颜色衣服的人相邻的情况:AAAA2 AAA=48。31【2010铜鼓中学

18、一模】某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四位同学分别给出下列四个结果:;其中正确的结论是()A仅有B仅有C和D仅有【答案】C【解析】对于,因为C=C,故正确;对于,CC=7,故亦正确。故选C。32【2010江西赣州十一县(市)高三年级第二学期期中联考】为预防和控制甲流感,某学校医务室欲将23支相同的温度计分发到高三年级10个班级中,要求分发到每个班级的温度计不少于2支,则不同的分发方式共有A、120种 B、175种 C、220种 D、820种【答案】C【解析】先给每个班发一支温度计,剩下的13支要求每班至少发一支,用隔板法,在12个空隙中插入9个板,有C

19、= C=220种分发方式。33【2010重庆一中4月月考】.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动每人一天,要求星期五有2人参加,星期六、星期日各有1人参加.则不同的选派方法共有( ) A.40种 B.60种 C.100种 D.120种【答案】B【解析】CCC=60。34【2010河南省郑州市第二次质量预测】2010年2月,我国部分地区遭遇雪灾,电煤库存吃紧为了支援这部分地区抗灾救灾,国家统一部署,加紧从某采煤区调运电煤某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组如果甲所在小组3列列车先开出,那么这6列列车先

20、后不同的发车顺序共有( ) A36种 B108种 C216种 D432种【答案】C【解析】甲先从其余四辆车选出两辆车构成一组,另两辆与乙构成一组,两组车的发车顺序为A,A,于是共有:CAA=216。35【2010岳阳县一中、澧县一中第三次联合考试】由数字1,2,3,9组成的三位数中,各位数字按严格递增(如“156”)或严格递减(如“421”)顺序排列的数的个数是( )A120B168C 204D216【答案】B【解析】2C=168。36【2010长沙市一中第一次模拟】某校在高二年级开设选修课,其中数学选修课开了三个班选课结束后,有四名选修英语的同学要求改修数学,但数学选修每班至多可再接收两名同

21、学,那么安排好这四名同学的方案有( ) A72种B54种C36种D18种【答案】B【解析】将四名同学分成三组:1,1,2,安排在三个数学班中:有A=36;)分成两组2,2。安排在两个班里,有A=18。故一共有361854种安排方案。37【2010河北省正定中学四月统考】的展开式中的系数为( )A360 B180 C179 D359【答案】C【解析】=,本题求的系数,只要求展开式中及的系数,取得的系数为;的系数为= 1,因此所求系数为38【2010衡水中学高三第一次模拟考试】设展开后为,那么( )A 20 B200 C55 D180【答案】B 【解析】依题意,Tr+1= C错误!未定义书签。(2

22、x)10-x,所以a1=102=20, a2=454=180,所以200,选择B;39【2010郑州市二模】二项式(2)6的展开式中,常数项是( ) A20 B160 C160 D20【答案】B【解析】设=为常数项,则=0, ,所以常数项为160 40【2010浙江省六校联考】设m、n是正整数,整式=(12x)+(15x)中含x的一次项的系数为16,则含x项的系数是( )A13 B6 C79 D37【答案】D【解析】由题意得(2)+(5)=16 2m +5n=16又 m、n是正整数, m=3、n=2展开式中含x项的系数是(2)+(5)=12+15=3741【2010重庆一中四月月考】的展开式中

23、各项的二项式系数之和为( ) A.256 B.128 C.1 D.0【答案】A【解析】注意区分二项式系数和项的系数之间的区别42【2010浙江温州二模】(x+1)(x2)=a+a(x1)+ a(x1) +a(x1) +a(x1),则a+ a +a+ a的值为( )A0 B2 C255 D2【答案】B【解析】令x=1,得2(1)= a,令x=2,得(2+1)0= a+ a+ a +a+ a,联立得:a+ a +a+ a=243【2010唐山一中期末】登山运动员10人,平均分为两组,其中熟悉道路的4人,每组都需要2人,那么不同的分配方法种数是A30B60C120D240【答案】B【解析】先将4个熟

24、悉道路的人平均分成两组有再将余下的6人平均分成两组有然后这四个组自由搭配还有种,故最终分配方法有CC=60(种)44【2010青岛市二模】若,且,则( )A. B. C. D.【答案】C【解析】由=56,知,利用赋值法得C45【2010成都一模】在(1+x)3+(1+x)4+(1+x)2004的展开式中x3的系数等于( )ACBCC2CD2C【答案】B【解析】含x3的系数为C+C+C+C=C46【2010上海普陀区二模】若=,则的值是( )A1 B C0 D 2【答案】A【解析】令,则=,令,则所以,= 147. 【2010 上海文数】2010年上海世博会园区每天9:00开园,20:00停止入

25、园。在右边的框图中,表示上海世博会官方网站在每个整点报道的入园总人数,表示整点报道前1个小时内入园人数,则空白的执行框内应填入 。【答案】SS+a48. 【2010 上海文数】在行列矩阵中,记位于第行第列的数为。当时, 。【答案】4【解析】1+3+5+7+9+2+4+6+8=4549. 【2010 上海文数)】将一个总数为、三层,其个体数之比为5:3:2。若用分层抽样方法抽取容量为100的样本,则应从中抽取 个个体。【答案】20【解析】考查分层抽样应从中抽取50. 【2010全国卷2理数】若的展开式中的系数是,则 【命题意图】本试题主要考查二项展开式的通项公式和求指定项系数的方法.【答案】1

26、【解析】展开式中的系数是.51. 【2010辽宁理数】的展开式中的常数项为_. 【命题立意】本题考查了二项展开式的通项,考查了二项式常数项的求解方法 【答案】-5【解析】的展开式的通项为,当r=3时,当r=4时,因此常数项为-20+15=-552. 【2010全国卷2文数】(x+1/x)9的展开式中,x3的系数是_。【答案】84【解析】 , , 53. 【2010江西理数】将6位志愿者分成4组,其中两个各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有 种(用数字作答)。【答案】 1080 【解析】考查概率、平均分组分配问题等知识,重点考查化归转化和应用知识的意识。先分组,

27、考虑到有2个是平均分组,得,再全排列得:54. 【2010四川理数】的展开式中的第四项是 . 【答案】【解析】T4 55. 【2010 天津理数】甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为 和 。【答案】24 23【解析】本题主要考查茎叶图的应用,属于容易题。甲加工零件个数的平均数为乙加工零件个数的平均数为【温馨提示】茎叶图中共同的数字是数字的十位,这事解决本题的突破口。56. 【2010 全国卷1文数】某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,

28、若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答)【答案】30【解析】:法一:可分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有种不同的选法;(2)A类选修课选2门,B类选修课选1门,有种不同的选法.所以不同的选法共有+种.法二:57. 【2010 四川文数】(x)4的展开式中的常数项为_(用数字作答) 。【答案】24【解析】展开式的通项公式为Tr1 取r2得常数项为C42(2)22458. 【2010 湖北文数】在的展开中, 的系数为_。【答案】45【解析】展开式即是10个(1-x2)相乘,要得到x4,则取2个1-x2中的(-x2)相乘,其余选1,则系数为,故系数

29、为45.59. 【2010 湖北理数】在(x+ )的展开式中,系数为有理数的项共有_项。【答案】6【解析】二项式展开式的通项公式为要使系数为有理数,则r必为4的倍数,所以r可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项。60【2010浙江六校五月联考】 如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿、三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有 种. 【答案】30【解析】将图中五个点分成三组:AC、BD、E;AC、BE、D;AD、BE、C;AD、CE、B;BD、CE、A。共五种情况,于是有5A=30种涂色方法。61【2010浙江

30、省杭州市第二次质检】将3个不同的小球放入编号分别为1,2,3,4,5,6的盒子内,6号盒中至少有一个球的方法种数是 【答案】91【解析】6353=91。62 【2010唐山海港高级中学五月考前冲刺】2010年上海世博会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 【答案】36【解析】分两类:若小张或小赵入选,则有选法;若小张、小赵都入选,则有选法,共有选法36种 63 【2010重庆高考四月模拟】摄影师要为5名学生和2位老师拍照,要求排成一排,2位老师相邻且不

31、排在两端,不同的排法共有 【答案】960 【解析】64 【2010天津市十二区县重点中学二模】由0,1,2,9这十个数字组成的、无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为 个【答案】210【解析】当个位与百位数字为0,8时,有AA;当个位与百位为1,9时,有AAA。共AA+ AAA=210。65【2010长沙市第一中学第九次月考】从8名女生,4名男生中选出6名学生组成课外小组,如果按性别分层抽样,则不同的抽取方法种数为 【答案】420【解析】根据分层抽样要求,应选出4名女生,2名男生,故有CC=420。66【2010陕西师大附中3月月考】在二项式(-)15的展开式中,有

32、 个有理项 【答案】3【解析】展开式的通项为:Tr+1= =,设Tr+1项为有理项,则=5-r为整数,r为6的倍数,又0r15,r可取0,6,12三个数,故共有3个有理项67【2010河北省石家庄市二模】若展开式的二项式系数之和为64,则展开式的常数项为 (用数字作答)【答案】20【解析】赋值法,令,则,解得常数项为20 68【2010上海嘉定区模拟】的二项展开式中第4项是 【答案】【解析】第四项令69【2010河北邯郸市二模】二项式的展开式中,常数项为 【答案】15【解析】利用二项式通项展开后再求70【2010甘肃省第二次大联考】设的展开式的各项系数之和为M,二项式系数之和为N,若MN=24

33、0,则展开式中的常数项为_【答案】20 【解析】各项系数和为,二项式系数和为,由MN=240,得,解得常数项为2071【2010河北唐山市摸底考试】 【答案】【解析】在二项展开式中=令,得,即72【2010全国三联辽宁卷】的展开式中的常数项为 【答案】84【解析】 设展开式中第项是常数项,即=为常数,解得,因此73【2010河南鹤壁市第二次质检】化简+2+3+n= 【答案】n2【解析】=,原式=+n+n+n+n=+)=n274【2010上海虹口区二模】在的展开式中,系数为有理数的项共有 项【答案】17【解析】的展开式的通项,该项的系数为,要满足是有理数,则应是6的倍数. 且, 系数为有理数的项

34、共有17项75【2010兰州市一模】在的展开式中,只有第5项的二项式系数最大,则展开式中常数项是 【答案】7【解析】第5项二项式系数为且中只有最大,故常数项是=776【2010河北承德一中期末】有A、B、C、D、E五位学生参加网页设计比赛,决出了第一到第五的名次A、B两位学生去问成绩,教师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名请你分析一下,这五位学生的名次排列共有_种不同的可能(用数字作答)【答案】18【解析】A不是第一名有A种A不是第一名,B不是第三名有A种符合要求的有AA=18种77【2010安徽省蚌埠市第三次质检】(x+1)(x2)=a+a(x1)+ a(x1) +a(x1) +a(x1),则a+ a +a+ a的值为 【答案】2【解析】令x=1,得2(1)= a,令x=2,得(2+1)0= a+ a+ a +a+ a,联立得:a+ a +a+ a=2() 永久免费组卷搜题网

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 事务文书

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁