《2010届高考数学总复习(五年高考)(三年联考)精品题库第八章 立体几何doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010届高考数学总复习(五年高考)(三年联考)精品题库第八章 立体几何doc--高中数学 .doc(78页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 永久免费组卷搜题网第八章 立体几何第一节 空间几何体的结构、三视图和直观图、表面积和体积第一部分 五年高考荟萃2009年高考题一、选择题1. 一空间几何体的三视图如图所示,则该几何体的体积为( ).2 2 侧(左)视图 2 2 2 正(主)视图 A. B. C. D. 【解析】:该空间几何体为一圆柱和一四棱锥组成的,俯视图 圆柱的底面半径为1,高为2,体积为,四棱锥的底面边长为,高为,所以体积为所以该几何体的体积为.答案:C【命题立意】:本题考查了立体几何中的空间想象能力,由三视图能够想象得到空间的立体图,并能准确地计算出.几何体的体积.2.一个棱锥的三视图如图,则该棱锥的全面积(单位:c)
2、为(A)48+12 (B)48+24 (C)36+12 (D)36+243.正六棱锥P-ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为(A)1:1 (B) 1:2 (C) 2:1 (D) 3:24.在区间-1,1上随机取一个数x,的值介于0到之间的概率为( ).A. B. C. D. 【解析】:在区间-1,1上随机取一个数x,即时, 区间长度为1, 而的值介于0到之间的区间长度为,所以概率为.故选C答案 C【命题立意】:本题考查了三角函数的值域和几何概型问题,由自变量x的取值范围,得到函数值的范围,再由长度型几何概型求得.5. 如右图,某几何体的正视图与侧视图都
3、是边长为1的正方形,且体积为。则该集合体的俯视图可以是答案: C6.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。现有沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“”的面的方位是A. 南 B. 北 C. 西 D. 下解:展、折问题。易判断选B7.如图,在半径为3的球面上有三点, 球心到平面的距离是,则两点的球面距离是A. B. C. D. 答案 B8若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积为 A. B. C. D. 答案 C9,如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三
4、棱锥的主视图是( )答案 B二、填空题10.图是一个几何体的三视图,若它的体积是,则a=_答案 11.如图是一个几何体的三视图,若它的体积是,则_12若某几何体的三视图(单位:)如图所示,则此几何体的体积是 答案 18【解析】该几何体是由二个长方体组成,下面体积为,上面的长方体体积为,因此其几何体的体积为1813.设某几何体的三视图如下(尺寸的长度单位为m)。 则该几何体的体积为 答案答案 414. 直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于 。 解:在中,可得,由正弦定理,可得外接圆半径r=2,设此圆圆心为,球心为,在中,易得球半径,故此球的表面积为. 15正三棱柱内接于半径为
5、的球,若两点的球面距离为,则正三棱柱的体积为 答案 816体积为的一个正方体,其全面积与球的表面积相等,则球的体积等于 答案 17如图球O的半径为2,圆是一小圆,A、B 是圆上两点,若A,B两点间的球面距离为,则= .答案 18.已知三个球的半径,满足,则它们的表面积,满足的等量关系是_. 答案 19.若球O1、O2表示面积之比,则它们的半径之比=_.答案 2三、解答题20(本小题满分13分) 某高速公路收费站入口处的安全标识墩如图4所示。墩的上半部分是正四棱锥,下半部分是长方体。图5、图6分别是该标识墩的正(主)视图和俯视图。(1)请画出该安全标识墩的侧(左)视图; (2)求该安全标识墩的体
6、积;(3)证明:直线平面. 【解析】(1)侧视图同正视图,如下图所示.()该安全标识墩的体积为: ()如图,连结EG,HF及 BD,EG与HF相交于O,连结PO. 由正四棱锥的性质可知,平面EFGH , 又 平面PEG 又 平面PEG; 20052008年高考题一、选择题1.(2008广东)将正三棱柱截去三个角(如图1所示分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )EFDIAHGBCEFDABC侧视图1图2BEABEBBECBED答案 A2.(2008海南、宁夏理)某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧
7、视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为( )A B C D答案 C【解析】结合长方体的对角线在三个面的投影来理解计算。如图设长方体的高宽高分别为,由题意得,所以,当且仅当时取等号。3.(2008山东)下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.9 B.10C.11 D12答案 D【解析】考查三视图与几何体的表面积。从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为3. (2007宁夏理8) 已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )102010202020俯视图侧视图正视图 答
8、案B4. (2007陕西理6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A B C D 答案B5.(2006安徽)表面积为 的正八面体的各个顶点都在同一个球面上,则此球的体积为A B C D答案 A【解析】此正八面体是每个面的边长均为的正三角形,所以由知,则此球的直径为,故选A。6.(2006福建)已知正方体外接球的体积是,那么正方体的棱长等于( )A.2 B. C. D.答案 D【解析】正方体外接球的体积是,则外接球的半径R=2,正方体的对角线的长为4,棱长等于,选D.7.( 2006湖南卷)过半径为2的球O表面上一点A作球O
9、的截面,若OA与该截面所成的角是60则该截面的面积是 ( ) A B.2 C.3 D.答案 A【解析】过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60,则截面圆的半径是R=1,该截面的面积是,选A.8.(2006山东卷)正方体的内切球与其外接球的体积之比为 ( )A. 1 B. 13 C. 13 D. 19答案 C【解析】设正方体的棱长为a,则它的内切球的半径为,它的外接球的半径为,故所求的比为13,选C.9.(2005全国卷)一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为 ( )A. B. C. D.答案B10.(2005全国卷)如图,在多面体ABCDEF
10、中,已知ABCD是边长为1的正方形,且均为正三角形,EFAB,EF=2,则该多面体的体积为 ( ) A. B.C. D.二、填空题11.(2008海南、宁夏理科)一个六棱柱的底面是正六边 形,其侧棱垂直底面已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为答案 【解析】令球的半径为,六棱柱的底面边长为,高为,显然有,且.12.(2008海南、宁夏文)一个六棱柱的底面是正六边形,其侧棱垂直底面。已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,那么这个球的体积为_答案 【解析】正六边形周长为,得边长为,故其主对角线为,从而球的直径 球的体积.
11、13. (2007天津理12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为答案 14.(2007全国理15)一个正四棱柱的各个顶点在一个直径为2 cm的球面上。如果正四棱柱的底面边长为1 cm,那么该棱柱的表面积为 cm2.答案 ABCPDEF15.(2006辽宁)如图,半径为2的半球内有一内接正六棱锥,则此正六棱锥的侧面积是_答案 【解析】显然正六棱锥的底面的外接圆是球的一个大圆,于是可求得底面边长为2,又正六棱锥的高依题意可得为2,依此可求得.第二部分 三年联考汇编2009年联考题一、 选择题1.(2009枣庄市二模)一个几何体的三视图如
12、图所示,则这个几何体的体积等于( )ABC D 答案 D2.(2009天津重点学校二模) 如图,直三棱柱的主视图面积为2a2,则左视图的面积为( ) A2a2 Ba2 C D答案 C3. (2009青岛二模)如下图为长方体木块堆成的几何体的三视图,则组成此几何体的长方体木块块数共有( )A3块 B4块 C5块 D6块答案B正视图侧视图俯视图4. (2009台州二模)如图,一个空间几何体的正视图、侧视图都是面积为,且一个内角为的菱形,俯视图为正方形,那么这个几何体的表面积为( )A. B.C . 4 D. 8答案 C5. (2009宁德二模)右图是一个多面体的三视图,则其全面积为( ) A B
13、C Dr答案 C6. (2009天津河西区二模)如图所示,一个空间几何体的正 视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为( )AZ BC D答案B7. (2009湛江一模)用单位立方块搭一个几何体,使它的主视图和俯视图如右俯视图主视图图所示,则它的体积的最小值与最大值分别为( )A与 B与 C与 D与答案 C8. (2009厦门大同中学)如果一个几何体的三视图如图所示(单位长度: cm), 则此几何体的表面积是( )2俯视图主视图左视图212 A. B.21 cm C. D. 24 cm 答案 A9.(抚州一中2009届高三第四次同步考试)下图是一个几何体的
14、三视图,根据图中数据,可得几何体的表面积是( ) 2 223俯视图 主视图 左视图A.22 B.12 C.424 D.432答案 D二、填空题10.(辽宁省抚顺一中2009届高三数学上学期第一次月考)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是 .答案 11.(2009南京一模)如图,在正三棱柱中,D为棱的中点,若截面是面积为6的直角三角形,则此三棱柱的体积为 .答案 12.(2009广州一模)一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为_cm2. 俯视图正(主)视图 8 5 5 8侧(左)视图 8
15、5 5答案 8013.(2009珠海二模)一个五面体的三视图如下,正视图与侧视图是等腰直角三角形,俯视图为直角梯形,部分边长如图所示,则此五面体的体积为_ 答案 220072008年联考题一、选择题1.(2008江苏省启东中学高三综合测试二)如图在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EFDE,且BC=1,则正三棱锥A-BCD 的体积是 ( ) 答案 B2.(2008江苏省启东中学高三综合测试四)一个与球心距离为1的平面截球体所得的圆面面积为,则球的体积为 ( ) A. B. C. D. 8 答案 A3. (福建省南靖一中2008年第四次月考) 球面上有三点A、B、C,任意两点之
16、间的球面距离都等于球大圆周长的四分之一,且过这三点的截面圆的面积为,则此球的体积为 ( )A. B. C. D. 答案 D4.(湖北省黄冈中学2008届高三第一次模拟考试)已知中,AB=2,BC=1,平面ABC外一点P满足PA=PB=PC=2,则三棱锥PABC的体积是( ) AB C D答案 D5.(吉林省吉林市2008届上期末)设正方体的棱长为,则它的外接球的表面积为( )A B2 C4D答案C6.(江西省鹰潭市2008届高三第一次模拟) 三棱锥PABC的侧棱PA、PB、PC两两垂直,侧面面积分别是6,4,3,则三棱锥的体积是 ( )A. 4 B. 6 C. 8 D. 10答案 A第二节 点
17、、线、面的位置关系一、 选择题1. 如图,正方体的棱线长为1,线段有两个动点E,F,且,则下列结论中错误的是 (A) (B) (C)三棱锥的体积为定值 (D)异面直线所成的角为定值2. 给定下列四个命题:若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;垂直于同一直线的两条直线相互平行; 若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是 A. 和 B. 和 C. 和 D. 和【解析】选D.3在三棱柱中,各棱长相等,侧掕垂直于底面,点是侧面的中心,则与平面所成角的大小是 ( )A
18、B C D 答案:C 【解析】取BC的中点E,则面,因此与平面所成角即为,设,则,即有4设是两个不同的平面,是一条直线,以下命题正确的是( )A若,则 B若,则 C若,则 D若,则 5C 【命题意图】此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中的基本元素关系【解析】对于A、B、D均可能出现,而对于C是正确的 6.设m,n是平面 内的两条不同直线,是平面 内的两条相交直线,则/ 的一个充分而不必要条件是 A.m / 且l / B. m / l 且n / lC. m / 且n / D. m / 且n / l【答案】:B解析若,则可得.若则存在7. 已知正
19、四棱柱中,为中点,则异面直线与所成的角的余弦值为A. B. C. D. 解:令则,连 异面直线与所成的角即与所成的角。在中由余弦定理易得。故选C8若正四棱柱的底面边长为1,与底面成60角,则到底面的距离为 ( ) A B1 C D【答案】D【解析】本题主要考查正四棱柱的概念、直线与平面所成的角以及直线与平面的距离等概念. (第4题解答图)属于基础知识、基本运算的考查. 依题意,如图,故选D.9已知二面角的大小为,为空间中任意一点,则过点且与平面和平面所成的角都是的直线的条数为( ) A2B3C4D5 答案 B10在正四棱柱中,顶点到对角线和到平面的距离分别为和,则下列命题中正确的是 A若侧棱的
20、长小于底面的边长,则的取值范围为(0,1) B若侧棱的长小于底面的边长,则的取值范围为 C若侧棱的长大于底面的边长,则的取值范围为 D若侧棱的长大于底面的边长,则的取值范围为C11.如图,在三棱柱ABC-A1B1C1中,ACB=900,ACC1=600,BCC1=450,侧棱CC1的长为1,则该三棱柱的高等于A. B. C. D. A12正方体ABCD的棱上到异面直线AB,C的距离相等的点的个数为(C)A2 B3 C. 4 D. 5 13平面六面体- 中,既与共面也与共面的棱的条数为【 C 】A3 B. 4 C.5 D. 6 14如图,正四面体的顶点,分别在两两垂直的三条射线,上,则在下列命题
21、中,错误的为 A是正三棱锥B直线平面C直线与所成的角是D二面角为 答案 B15.如图,已知六棱锥的底面是正六边形,则下列结论正确的是. .平面 C. 直线平面 .答案 D二、填空题16如图,在长方形中,为的中点,为线段(端点除外)上一动点现将沿折起,使平面平面在平面内过点作,为垂足设,则的取值范围是 答案: 【解析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时,随着 F点到C点时,因平面,即有,对于,又,因此有,则有,因此的取值范围是 17.对于四面体ABCD,下列命题正确的是_(写出所有正确命题的编号)。 相对棱AB与CD所在的直线异面;由顶点A作四面体的高,其垂足是BCD的三条
22、高线的交点;若分别作ABC和ABD的边AB上的高,则这两条高所在直线异面; 分别作三组相对棱中点的连线,所得的三条线段相交于一点;最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱。解析18.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为( D )(A) (B) (C) (D) 解:设的中点为D,连结D,AD,易知即为异面直线与所 成的角,由三角余弦定理,易知.故选D 19.已知二面角-l-为 ,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为( C )(A) (B)2 (C) (D)4 解:如图分别作 ,连,
23、又当且仅当,即重合时取最小值。故答案选C。 20.如图,已知正三棱柱的各条棱长都相等,是侧 棱的中点,则异面直线所成的角的大小 是 。答案 21如图,若正四棱柱的底面连长为2,高 为4,则异面直线与AD所成角的大小是_(结果 用反三角函数表示).答案三、解答题22(本小题满分14分) 如图,在直三棱柱中,、分别是、的中 点,点在上,。 求证:(1)EF平面ABC; (2)平面平面.【解析】 本小题主要考查直线与平面、平面与平面得位置关系,考查空间想象能力、推理论证能力。满分14分。23(本小题满分14分)如图6,已知正方体的棱长为2,点是正方形的中心,点、分别是棱的中点设点分别是点,在平面内的
24、正投影(1)求以为顶点,以四边形在平面内的正投影为底面边界的棱锥的体积;(2)证明:直线平面;(3)求异面直线所成角的正弦值.解:(1)依题作点、在平面内的正投影、,则、分别为、的中点,连结、,则所求为四棱锥的体积,其底面面积为 ,又面,.(2)以为坐标原点,、所在直线分别作轴,轴,轴,得、,又,则,即,又,平面.(3),则,设异面直线所成角为,则.24.(本小题满分12分)如图,在五面体ABCDEF中,FA 平面ABCD, AD/BC/FE,ABAD,M为EC的中点,AF=AB=BC=FE=AD (I) 求异面直线BF与DE所成的角的大小;(II) 证明平面AMD平面CDE;(III)求二面
25、角A-CD-E的余弦值。 方法一:()解:由题设知,BF/CE,所以CED(或其补角) 为异面直线BF与DE所成的角。设P为AD的中点,连结EP,PC。因为FEAP,所以FAEP,同理ABPC。又FA平面ABCD,所以EP平面ABCD。而PC,AD都在平面ABCD内,故EPPC,EPAD。由ABAD,可得PCAD设FA=a,则EP=PC=PD=a,CD=DE=EC=,故CED=60。所以异面直线BF与DE所成的角的大小为60 (II)证明:因为 (III)由(I)可得, 25. (本小题满分12分)如图,在四棱锥中,平面,平分,为的中点,(1)证明:平面 (2)证明:平面(3)求直线与平面所成
26、角的正切值2009042326(本题满分15分)如图,平面平面,是以为斜边的等腰直角三角形,分别为,的中点, (I)设是的中点,证明:平面; (II)证明:在内存在一点,使平面,并求点到,的距离证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O, 则,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面(II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为 200
27、9042327(本题满分14分)如图,平面,分别为的中点(I)证明:平面;(II)求与平面所成角的正弦值28()证明:连接, 在中,分别是的中点,所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD()在中,所以 而DC平面ABC,所以平面ABC 而平面ABE, 所以平面ABE平面ABC, 所以平面ABE由()知四边形DCQP是平行四边形,所以 所以平面ABE, 所以直线AD在平面ABE内的射影是AP, 所以直线AD与平面ABE所成角是 在中, ,所以29.(本小题满分12分)如图,已知两个正方行ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点 。(I)若平面AB
28、CD 平面DCEF,求直线MN与平面DCEF所成角的正值弦;(II)用反证法证明:直线ME 与 BN 是两条异面直线。 (I)解法一:取CD的中点G,连接MG,NG。设正方形ABCD,DCEF的边长为2, 则MGCD,MG=2,NG=.因为平面ABCD平面DCED,所以MG平面DCEF,可得MNG是MN与平面DCEF所成的角。因为MN=,所以sinMNG=为MN与平面DCEF所成角的正弦值 6分30(本小题满分13分)如图,ABCD的边长为2的正方形,直线l与平面ABCD平行,g和F式l上的两个不同点,且EA=ED,FB=FC, 和是平面ABCD内的两点,和都与平面ABCD垂直,()证明:直线
29、垂直且平分线段AD: ()若EAD=EAB=60,EF=2,求多面体ABCDEF的体积。【思路】根据空间线面关系可证线线垂直,由分割法可求得多面体体积,体现的是一种部分与整体的基本思想。【解析】(1)由于EA=ED且点E在线段AD的垂直平分线上,同理点F在线段BC的垂直平分线上.又ABCD是四方形线段BC的垂直平分线也就是线段AD的垂直平分线即点EF都居线段AD的垂直平分线上. 所以,直线EF垂直平分线段AD.(2)连接EB、EC由题意知多面体ABCD可分割成正四棱锥EABCD和正四面体EBCF两部分.设AD中点为M,在RtMEE中,由于ME=1, .ABCD又BCF=VCBEF=VCBEA=
30、VEABC多面体ABCDEF的体积为VEABCDVEBCF=31(本小题满分12分)(注意:在试题卷上作答无效)如图,四棱锥中,底面为矩形,底面, ,点M在侧棱上,=60(I)证明:M在侧棱的中点(II)求二面角的大小。(I)解法一:作交于N,作交于E,连ME、NB,则面,,设,则,在中,。在中由解得,从而 M为侧棱的中点M. 解法二:过作的平行线.解法三:利用向量处理. 详细可见09年高考参考答案. (II)分析一:利用三垂线定理求解。在新教材中弱化了三垂线定理。这两年高考中求二面角也基本上不用三垂线定理的方法求作二面角。过作交于,作交于,作交于,则,面,面面,面即为所求二面角的补角.分析二
31、:利用二面角的定义。在等边三角形中过点作交于点,则点为AM的中点,取SA的中点G,连GF,易证,则即为所求二面角.分析三:利用空间向量求。在两个半平面内分别与交线AM垂直的两个向量的夹角即可。另外:利用射影面积或利用等体积法求点到面的距离等等,这些方法也能奏效。总之在目前,立体几何中的两种主要的处理方法:传统方法与向量的方法仍处于各自半壁江山的状况。命题人在这里一定会照顾双方的利益。32.(本小题满分12分) 如图,直三棱柱中,、分别为、的中点,平面 (I)证明:(II)设二面角为60,求与平面所成的角的大小。(I)分析一:连结BE,为直三棱柱, 为的中点,。又平面,(射影相等的两条斜线段相等
32、)而平面,(相等的斜线段的射影相等)。分析二:取的中点,证四边形为平行四边形,进而证,得也可。分析三:利用空间向量的方法。具体解法略。(II)分析一:求与平面所成的线面角,只需求点到面的距离即可。作于,连,则,为二面角的平面角,.不妨设,则.在中,由,易得. 设点到面的距离为,与平面所成的角为。利用,可求得,又可求得 即与平面所成的角为分析二:作出与平面所成的角再行求解。如图可证得,所以面。由分析一易知:四边形为正方形,连,并设交点为,则,为在面内的射影。以下略。分析三:利用空间向量的方法求出面的法向量,则与平面所成的角即为与法向量的夹角的余角。具体解法详见高考试题参考答案。总之在目前,立体几
33、何中的两种主要的处理方法:传统方法与向量的方法仍处于各自半壁江山的状况。命题人在这里一定会兼顾双方的利益。34(本小题共14分) 如图,在三棱锥中,底面,点,分别在棱上,且 ()求证:平面;()当为的中点时,求与平面所成的角的大小;()是否存在点使得二面角为直二面角?并说明理由.【解法1】本题主要考查直线和平面垂直、直线与平面所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力()PA底面ABC,PABC.又,ACBC.BC平面PAC.()D为PB的中点,DE/BC,又由()知,BC平面PAC,DE平面PAC,垂足为点E.DAE是AD与平面PAC所成的角,PA底面ABC,PAA
34、B,又PA=AB,ABP为等腰直角三角形,在RtABC中,.在RtADE中,与平面所成的角的大小.()AE/BC,又由()知,BC平面PAC,DE平面PAC,又AE平面PAC,PE平面PAC,DEAE,DEPE,AEP为二面角的平面角,PA底面ABC,PAAC,. 在棱PC上存在一点E,使得AEPC,这时,故存在点E使得二面角是直二面角.【解法2】如图,以A为原煤点建立空间直角坐标系, 设,由已知可得 . (), ,BCAP.又,BCAC,BC平面PAC.()D为PB的中点,DE/BC,E为PC的中点,又由()知,BC平面PAC,DE平面PAC,垂足为点E.DAE是AD与平面PAC所成的角,.
35、与平面所成的角的大小.()同解法1.36(本小题共14分)如图,四棱锥的底面是正方形,点E在棱PB上.()求证:平面; ()当且E为PB的中点时,求AE与平面PDB所成的角的大小.【解法1】本题主要考查直线和平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力()四边形ABCD是正方形,ACBD,PDAC,AC平面PDB,平面.()设ACBD=O,连接OE, 由()知AC平面PDB于O, AEO为AE与平面PDB所的角, O,E分别为DB、PB的中点, OE/PD,又, OE底面ABCD,OEAO, 在RtAOE中, ,即AE与平面PDB所成的角的大小为.37(本小题满分12分,()问5分,()问7分)如