《2010高考数学考点预测6导数及其应用doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010高考数学考点预测6导数及其应用doc--高中数学 .doc(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 永久免费组卷搜题网2010高考数学考点预测导数及其应用一、考点介绍导数属于新增内容,是高中数学知识的一个重要的交汇点,命题范围非常广泛,为高考考查函数提供了广阔天地,处于一种特殊的地位,不但一定出大题而相应有小题出现。主要考查导数有关的概念、计算和应用。利用导数工具研究函数的有关性质,把导数应用于单调性、极值等传统、常规问题的同时,进一步升华到处理与自然数有关的不等式的证明,是函数知识和不等式知识的一个结合体,它的解题又融合了转化、分类讨论、函数与方程、数形结合等数学思想与方法,不但突出了能力的考查,同时也注意了高考重点与热点,这一切对考查考生的应用能力和创新意识都大有益处。1了解导数概念的
2、某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念2熟记基本导数公式;掌握两个函数和、差、积、商的求导法则了解复合函数的求导法则,会求某些简单函数的导数3理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值二、高考真题1.(2008全国一21)(本小题满分12分)(注意:在试题卷上作答无效)已知函数,()讨论函数的单调区间;()设函数在区间内是减函数,求的取值范围解:(1)求导:当时,在上递增当,求得两根为即在递增,递减
3、,递增(2),且 解得:2.(2008全国二21)(本小题满分12分)设,函数()若是函数的极值点,求的值;()若函数,在处取得最大值,求的取值范围解:()因为是函数的极值点,所以,即,因此经验证,当时,是函数的极值点4分()由题设,当在区间上的最大值为时, 即故得9分反之,当时,对任意,而,故在区间上的最大值为综上,的取值范围为12分3.(2008山东卷21)(本小题满分12分)已知函数其中nN*,a为常数.()当n=2时,求函数f(x)的极值;()当a=1时,证明:对任意的正整数n,当x2时,有f(x)x-1.()解:由已知得函数f(x)的定义域为x|x1, 当n=2时, 所以 (1)当a
4、0时,由f(x)=0得1,1,此时 f(x)=.当x(1,x1)时,f(x)0,f(x)单调递减;当x(x1+)时,f(x)0, f(x)单调递增.(2)当a0时,f(x)0恒成立,所以f(x)无极值.综上所述,n=2时,当a0时,f(x)在处取得极小值,极小值为当a0时,f(x)无极值.()证法一:因为a=1,所以 当n为偶数时,令则 g(x)=1+0(x2).所以当x2,+时,g(x)单调递增,又 g(2)=0因此g(2)=0恒成立, 所以f(x)x-1成立.当n为奇数时, 要证x-1,由于0,所以只需证ln(x-1) x-1, 令 h(x)=x-1-ln(x-1), 则 h(x)=1-0
5、(x2), 所以 当x2,+时,单调递增,又h(2)=10, 所以当x2时,恒有h(x) 0,即ln(x-1)x-1命题成立.综上所述,结论成立.证法二:当a=1时,当x2,时,对任意的正整数n,恒有1,故只需证明1+ln(x-1) x-1.令则当x2时,0,故h(x)在上单调递增,因此当x2时,h(x)h(2)=0,即1+ln(x-1) x-1成立.故当x2时,有x-1.即f(x)x-1.4.(2008湖南卷21)(本小题满分13分)已知函数f(x)=ln2(1+x)-.(I) 求函数的单调区间;()若不等式对任意的都成立(其中e是自然对数的底数).求的最大值.解: ()函数的定义域是,设则
6、令则当时, 在(-1,0)上为增函数,当x0时,在上为减函数.所以h(x)在x=0处取得极大值,而h(0)=0,所以,函数g(x)在上为减函数.于是当时,当x0时,所以,当时,在(-1,0)上为增函数.当x0时,在上为减函数.故函数的单调递增区间为(-1,0),单调递减区间为.()不等式等价于不等式由知, 设则由()知,即所以于是G(x)在上为减函数.故函数G(x)在上的最小值为所以a的最大值为5.(2008陕西卷21)(本小题满分12分)已知函数(且,)恰有一个极大值点和一个极小值点,其中一个是()求函数的另一个极值点;()求函数的极大值和极小值,并求时的取值范围解:(),由题意知,即得,(
7、*),由得,由韦达定理知另一个极值点为(或)()由(*)式得,即当时,;当时,(i)当时,在和内是减函数,在内是增函数,由及,解得(ii)当时,在和内是增函数,在内是减函数,恒成立综上可知,所求的取值范围为6.(2008重庆卷20)(本小题满分13分.()小问5分.()小问8分.)设函数曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1)处的切线垂直于y轴.()用a分别表示b和c;()当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.解:()因为 又因为曲线通过点(0,2a+3), 故 又曲线在(-1,f(-1))处的切线垂直于y轴,故 即-2a+b=0,因此b=2a
8、. ()由()得 故当时,取得最小值-. 此时有 从而 所以 令,解得 当 当 当 由此可见,函数的单调递减区间为(-,-2)和(2,+);单调递增区间为(-2,2).7.(2008福建卷19)(本小题满分12分)已知函数.()设an是正数组成的数列,前n项和为Sn,其中a1=3.若点(nN*)在函数y=f(x)的图象上,求证:点(n,Sn)也在y=f(x)的图象上;()求函数f(x)在区间(a-1,a)内的极值.本小题主要考查函数极值、等差数列等基本知识,考查分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分. ()证明:因为所以(x)=x2+2x, 由点在函数y
9、=f(x)的图象上, 又所以 所以,又因为(n)=n2+2n,所以, 故点也在函数y=f(x)的图象上.()解:,由得.当x变化时,的变化情况如下表:x(-,-2)-2(-2,0)0(0,+)f(x)+0-0+f(x)极大值极小值注意到,从而当,此时无极小值;当的极小值为,此时无极大值;当既无极大值又无极小值.三、名校试题1.(2008年潍坊市高三统一考试)定义在的三个函数f(x)、g(x)、h(x),已知f(x)=lnx,g(x)= ,且g(x)在1,2为增函数,h(x)在(0,1)为减函数.(I)求g(x),h(x)的表达式;(II)求证:当1x1时,为增函数.9分即结论成立.10分(II
10、I)由 (1)知:对应表达式为问题转化成求函数即求方程:即:设当时,为减函数.当时,为增函数.而的图象开口向下的抛物线与的大致图象如图:与的交点个数为2个.即与的交点个数为2个.2.(湖南师大附中)(本小题满分14分)已知函数 ()试判断函数上单调性并证明你的结论; ()若恒成立,求整数k的最大值; ()求证:(1+12)(1+23)1+n(n+1)e2n3.解:(I)(2分)上是减函数.(4分)(II)即h(x)的最小值大于k.(6分)则上单调递增,又存在唯一实根a,且满足当故正整数k的最大值是3 9分()由()知 11分令,则ln(1+12)+ln(1+23)+ln1+n(n+1)(1+1
11、2)(1+23)1+n(n+1)e2n3 14分3.(浙江省重点中学2008年5月)已知函数,数列的前项和为,且()求的最大值;()证明:;()探究:数列是否单调?解:(),=,(2分)当时,在上单调递增;当时,在上单调递减在区间内,(2分)()用数学归纳法证明: 当时, ,成立; 假设当时,成立当时,由及,得,(2分)由() 知,在上单调递增,所以,而, 故当时,也成立由、知,对任意都成立(4分)()数列单调递减(1分)理由如下:当时, ;当时,由得,(2分)又由 () 知,即,(3分)综上,数列单调递减4已知函数,数列的前项和为,且()求的最大值;()证明:;()探究:数列是否单调?解:(
12、),=,(2分)当时,在上单调递增;当时,在上单调递减在区间内,(2分)()用数学归纳法证明: 当时, ,成立; 假设当时,成立当时,由及,得,(2分)由() 知,在上单调递增,所以,而, 故当时,也成立由、知,对任意都成立(4分)()数列单调递减(1分)理由如下:当时, ;当时,由得,(2分)又由 () 知,即,(3分)综上,数列单调递减OxyF11MP5.(天津市十二区县重点中学) (本小题满分14分)已知函数()判断的奇偶性;()在上求函数的极值;()用数学归纳法证明:当时,对任意正整数都有解:() 。3分()当时, 5分令有, 当x变化时的变化情况如下表:由表可知:(+0增极大值减当时
13、取极大值. 7分()当时 8分 考虑到:时,不等式等价于(1) 所以只要用数学归纳法证明不等式(1)对一切都成立即可9分(i)当时,设, 10分故,即所以,当时,不等式(1)都成立 11分(ii)假设时,不等式(1)都成立,即 当时设 有 12分 故为增函数, 所以,即, 13分这说明当时不等式(1)也都成立,根据(i)(ii)可知不等式(1)对一切都成立,故原不等式对一切都成立. 14分四、考点分类讲解考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1(2007年北京卷)是的导函数,则的值是考查目的 本题主要考查函数的导数
14、和计算等基础知识和能力.解答过程 故填3.例2. ( 2006年湖南卷)设函数,集合M=,P=,若MP,则实数a的取值范围是 ( ) A.(-,1) B.(0,1) C.(1,+) D. 1,+)考查目的本题主要考查函数的导数和集合等基础知识的应用能力.解答过程由综上可得MP时, 考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.(2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线.典型例题例3.(2007年湖南文)已知函数在区间,内各有一个极值点(I)求的最大值;
15、(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式思路启迪:用求导来求得切线斜率.解答过程:(I)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根,设两实根为(),则,且于是,且当,即,时等号成立故的最大值是16(II)解法一:由知在点处的切线的方程是,即,因为切线在点处空过的图象,所以在两边附近的函数值异号,则不是的极值点而,且若,则和都是的极值点所以,即,又由,得,故解法二:同解法一得因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在()当时,当时,;或当时,当时,设,则当时,当时,;
16、或当时,当时,由知是的一个极值点,则,所以,又由,得,故例4.(2006年安徽卷)若曲线的一条切线与直线垂直,则的方程为( )A B C D考查目的本题主要考查函数的导数和直线方程等基础知识的应用能力.解答过程与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为.故选A.例5 ( 2006年重庆卷)过坐标原点且与x2+y2 -4x+2y+=0相切的直线的方程为 ( )A.y=-3x或y=x B. y=-3x或y=-x C.y=-3x或y=-x D. y=3x或y=x 考查目的本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.解答过程解法1:设切线
17、的方程为又故选A.解法2:由解法1知切点坐标为由故选A.例6.已知两抛物线, 取何值时,有且只有一条公切线,求出此时公切线的方程.思路启迪:先对求导数.解答过程:函数的导数为,曲线在点P()处的切线方程为,即 曲线在点Q的切线方程是即 若直线是过点P点和Q点的公切线,则式和式都是的方程,故得,消去得方程, 若=,即时,解得,此时点P、Q重合.当时,和有且只有一条公切线,由式得公切线方程为 .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一
18、种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1. 求函数的解析式; 2. 求函数的值域; 3.解决单调性问题; 4.求函数的极值(最值);5.构造函数证明不等式.典型例题例7(2006年天津卷)函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A1个 B2个 C3个D 4个考查目的本题主要考查函数的导数和函数图象性质等基础知识的应用能力.解答过程由图象可见,在区间内的图象上有一个极小值点.故选A.例8 .(2007年全国一)设函数在及时取得极值()求a、b的值;()若对于任意的,都有
19、成立,求c的取值范围思路启迪:利用函数在及时取得极值构造方程组求a、b的值解答过程:(),因为函数在及取得极值,则有,即解得,()由()可知,当时,;当时,;当时,所以,当时,取得极大值,又,则当时,的最大值为因为对于任意的,有恒成立,所以,解得或,因此的取值范围为例9.函数的值域是_.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。此例的形式结构较为复杂,采用导数法求解较为容易。解答过程:由得,即函数的定义域为.,又,当时,函数在上是增函数,而,的值域是.例10(2006年天津卷)已知函数,其中为参数,且(1)当时
20、,判断函数是否有极值;(2)要使函数的极小值大于零,求参数的取值范围;(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围考查目的本小题主要考查运用导数研究三角函数和函数的单调性及极值、解不等式等基础知识,考查综合分析和解决问题的能力,以及分类讨论的数学思想方法.解答过程()当时,则在内是增函数,故无极值.(),令,得.由(),只需分下面两种情况讨论. 当时,随x的变化的符号及的变化情况如下表:x0+0-0+极大值极小值因此,函数在处取得极小值,且.要使,必有,可得.由于,故.当时,随x的变化,的符号及的变化情况如下表:+0-0+极大值极小值因此,函数处取得极
21、小值,且若,则.矛盾.所以当时,的极小值不会大于零.综上,要使函数在内的极小值大于零,参数的取值范围为.(III)解:由(II)知,函数在区间与内都是增函数。由题设,函数内是增函数,则a须满足不等式组 或 由(II),参数时时,.要使不等式关于参数恒成立,必有,即.综上,解得或.所以的取值范围是.例11(2006年山东卷)设函数f(x)=ax(a+1)ln(x+1),其中a-1,求f(x)的单调区间.考查目的本题考查了函数的导数求法,函数的极值的判定,考查了应用数形结合的数学思想分析问题解决问题的能力解答过程由已知得函数的定义域为,且(1)当时,函数在上单调递减,(2)当时,由解得、随的变化情
22、况如下表0+极小值从上表可知当时,函数在上单调递减.当时,函数在上单调递增.综上所述:当时,函数在上单调递减.当时,函数在上单调递减,函数在上单调递增.例12(2006年北京卷)已知函数在点处取得极大值,其导函数的图象经过点,如图所示.求:()的值;()的值.考查目的本小题考查了函数的导数,函数的极值的判定,闭区间上二次函数的最值, 函数与方程的转化等基础知识的综合应用,考查了应用数形结合的数学思想分析问题解决问题的能力解答过程解法一:()由图像可知,在上,在上,在上,故在上递增,在上递减,因此在处取得极大值,所以()由得解得解法二:()同解法一()设又所以由即得所以例13(2006年湖北卷)
23、设是函数的一个极值点.()求与的关系式(用表示),并求的单调区间;()设,.若存在使得成立,求的取值范围.考查目的本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解答过程()f (x)x2(a2)xba e3x,由f (3)=0,得 32(a2)3ba e330,即得b32a,则 f (x)x2(a2)x32aa e3xx2(a2)x33a e3x(x3)(xa+1)e3x.令f (x)0,得x13或x2a1,由于x3是极值点,所以x+a+10,那么a4.当a3x1,则在区间(,3)上,f (x)0,f (x)为增函数;在区间(a1,)上,f (x)4时,x2
24、3x1,则在区间(,a1)上,f (x)0,f (x)为增函数;在区间(3,)上,f (x)0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间0,4上的值域是min(f (0),f (4) ),f (3),而f (0)(2a3)e30,f (3)a6,那么f (x)在区间0,4上的值域是(2a3)e3,a6.又在区间0,4上是增函数,且它在区间0,4上的值域是a2,(a2)e4,由于(a2)(a6)a2a()20,所以只须仅须(a2)(a6)0,解得0a.故a的取值范围是(0,).例14 (2007年全国二)已知函数在处取得极大值,在处取得极小值,且
25、(1)证明;(2)若z=a+2b,求z的取值范围。解答过程求函数的导数()由函数在处取得极大值,在处取得极小值,知是的两个根所以当时,为增函数,由,得()在题设下,等价于即化简得此不等式组表示的区域为平面上三条直线:所围成的的内部,其三个顶点分别为:ba2124O在这三点的值依次为所以的取值范围为小结:本题的新颖之处在把函数的导数与线性规划有机结合考点4 导数的实际应用建立函数模型,利用典型例题例15. (2007年重庆文)用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?考查目的本小题主要考查函数、导
26、数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力.解答过程设长方体的宽为x(m),则长为2x(m),高为.故长方体的体积为从而令V(x)0,解得x=0(舍去)或x=1,因此x=1.当0x1时,V(x)0;当1x时,V(x)0,故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。从而最大体积VV(x)912-613(m3),此时长方体的长为2 m,高为1.5 m.答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3。例16(2006年福建卷)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析
27、式可以表示为:已知甲、乙两地相距100千米.(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?考查目的本小题主要考查函数、导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力.解答过程(I)当时,汽车从甲地到乙地行驶了小时,要耗没(升).答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,依题意得令得当时,是减函数;当时,是增函数.当时,取到极小值因为在上只有一个极值,所以它是最小值.答:当汽车以
28、80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.五、考点预测1.已知函数若在是增函数,求实数的范围。解析:0在上恒成立在上恒成立而在上的最小值为16,故。2.已知定义在R上的函数y=f(x)的导函数f/(x)在R上也可导,且其导函数f/(x)/0,则y=f(x)的图象可能是下图中的 ( )OxyOxyA B C DOxyOxyC解析:由f/(x)/0知f/(x)在R上递减,即函数y=f(x)的图象上从左到右各点处的切线斜率递减,不难看出图象满足这一要求。3.f(x)是定义在(0,+)上的非负可导函数,且满足xf/(x)+f(x)0,对任意正数a、b,若ab,则必有 (
29、 ) (07陕西理11)A.af(b) bf(a) B.bf(a) af(b)C.af(a) f(b) D.bf(b) f(a)解析:xf/(x)+f(x)0xf(x)/ 0函数F(x)= xf(x) 在(0,+)上为常函数或递减,又0ab且f(x)非负,于是有:af(a)bf(b)0 两式相乘得: af(b) bf(a),故选A。4.已知函数在处取得极大值,在处取得极小值,且(1)证明;(2)若z=a+2b,求z的取值范围。解析:函数的导数()由函数在处取得极大值,在处取得极小值,知是的两个根所以;当时,为增函数,由,得()在题设下,等价于即化简得此不等式组表示的区域为平面上三条直线:所围成
30、的的内部,由“线性规划”的知识容易求得:的取值范围为5.已知函数在处有极值10,则 解析: ,= 由得:或当时,此时函数无极值,舍去;当时,函数在处左减右增,有极小值;此时18 。6.设函数在及时取得极值()求a、b的值;()若对于任意的,都有成立,求c的取值范围解析:(),由,解得,()在0,3上恒成立即,由()可知,当时,;当时,;当时,即在0,1上递增,1,2上递减,2,3上递增;当时,取得极大值,又故当时,的最大值为于是有:,解得或,因此的取值范围为。7.已知定义在正实数集上的函数,其中设两曲线,有公共点,且在该点处的切线相同用表示,并求的最大值;解析:设与在公共点处的切线相同,由题意,即由得:,或(舍去)即有令,则于是当,即时,;当,即时,故在为增函数,在为减函数,在的最大值为 高考资源网 永久免费组卷搜题网