《2007-2008学年度北京市宣武区第二学期九年级第一次质量检测--初中数学 .doc》由会员分享,可在线阅读,更多相关《2007-2008学年度北京市宣武区第二学期九年级第一次质量检测--初中数学 .doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2007-2008学年度北京市宣武区第二学期九年级第一次质量检测数学试卷一、选择题(本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项是符合题意的)1.5的算术平方根是A.25 B. C. D.2.如图,已知ABCD,AD与BC相交与点P,AB=4,CD=7,PD=10,则AP的长等于A.40/11 B.70/4 C.70/11 D.40/73.如图,以RtABC的直角边AC所在的直线为轴,将ABC旋转一周,所形成的几何体的俯视图是4.O的半径r=10cm,圆心到直线l的距离OM=8cm,在直线l上有一点P且PM=6cm,则点PA.在O内 B.在O上 C.在O外 D.可能
2、在O内可能在O外5.如图,一个小球从A点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达H点的概率是A.1/8 B.1/6 C.1/4 D.1/26. 已知一次函数y=kx+b(k,b都是常数,且k0),x与y的部分对应值如表所示,那么m的值等于A.-1 B.0 C.1/2 D.27.对于实数a, b, c, d规定一种运算:,如,那么时,x( ) A. B. C. D.8.如图,边长为1和2的两个正方形的一边在同一水平线上,小正方形沿水平线自左向右匀速穿过大正方行,下图反映了这个运动的全过程。设小正方形的运动时间为t,两正方形重叠部分面积为S,则S与t的函数图像大
3、致为 二、 填空题(本大题共4小题,每小题4分,共16分,把答案写在题中横线上)9.如图,是甲乙两地5月下旬的日平均气温统计图,则甲乙两地这10天日平均气温的方差大小关系为:10.如图,在ABC中,C=90,AB=10cm,sinA=4/5,则BC长为_cm.11.如图,二次函数y=ax2+bx+c的图像开口向上,图像经过点(-1,2)和(1,0),且与y轴相交于负半轴,给出四个结论:a0;b0;c0;a+b+c=0.其中正确的序号是_12.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有一组数:1,1,2,3,4,8,13,。其中从第三个数起,每一个数都等于它前面两个数的和。现以这组数中
4、的各个数作为正方形的边长构造如图所示的正方形:序号周长6101626若按此规律继续作矩形,则序号为的矩形周长是_三、解答题(本大题共13小题,共72分,解答应写出文字说明或演算步骤)13.(本小题满分5分)现给出三个多项式:x2/2+x-1,x2/2+3x+1,x2/2-x。请你选择其中两个进行加法运算,并把结果因式分解。14.(本小题满分5分)解方程:15. (本小题满分5分)解不等式组,并把解集在数轴上表示出来。16.(本小题满分5分)m为何正整数时,关于x的一元二次方程x2+4x+m-1=0有两个不相等的实数根。17.(本小题满分4分)已知ABC中,A=90,B=67.5。请画一条直线,
5、把这个三角新分割成两个等腰三角形。(请你利用下面给出的备用图,画出两种不同的分割方法。只需要画图,不必说明理由,但要在图中标出相等两角的度数)18.(本小题满分6分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径。下图是水平放置的破裂管道有水部分的截面。(1)作图题:请你用圆规、直尺补全这个输水管道的圆形截面;(不写作法,但要保留作图痕迹)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深的地方的高度为4cm,求这个圆形截面的半径。19.(本小题满分6分)将图1中矩形ABCD沿对角线AC剪开,再把ABC沿着AD方向平移,得到图2中的ABC,除ADC与
6、CBA全等外,你还可以指出哪几对全等的三角形(不能添加辅助线和字母)?请选择其中一对加以证明。20.(本小题满分5分)如图,反比例函数y=k/x的图像与一次函数y=mx+b的图像交于A(1,3)、B(n,-1)两点(1)求反比例函数与一次函数的解析式;(2)根据图像回答:当x取何值时,此反比例函数的值大于一次函数的值?21.(本小题满分5分)“农民也可以报销医疗费了!”这是某市推行新型农村合作医疗的成果。村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可以得到按一定比例返回的返回款。这一举措极大地增强了农民抵御大病风险的能力,小华与同学随机调查了他们乡的一些农民,
7、根据收集到的数据绘制了如下的统计图。根据以上信息,解答以下问题:(1)本次调查了多少村民?被调查的村民中。有多少人参加合作医疗得到了返回款?(2)该乡若有10000名村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年增长率相同,求这个年增长率。22.(本小题满分5分)如图,在梯形ABCD中,ADBC,AD的长为4,S梯形ABCD=9.已知点A、B的坐标分别为(1,0)和(2,-3)(1)求点C的坐标;(2)取点E(2,-1),联结DE并延长交AB于F,试猜想DF与AB之间的位置关系,并证明你的结论;(3)将梯形ABCD绕点A旋转180后成梯形AB
8、CD,画出梯形ABCD。23.(本小题满分7分)如图,正方形ABCD边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD的边AB,CD,DA上,且AH=2, 联结CF。(1)当DG=2时,试求菱形EFGH的边长与FCG的面积;(2)设DG=X,试用含x的代数式表示FCG的面积;(3)请判断FCG的面积能否等于1,并说明理由。24.(本小题满分7分)已知:直线y=x+6交x轴,y轴于A,C两点,经过A,O两点的抛物线y=ax2+bx(a0)的顶点B在直线AC上。(1)求A,C两点的坐标;(2)求出该抛物线的函数关系式;(3)以B为圆心,以AB为半径作B,将B沿x轴翻折得到D。试判断直线
9、AC与D的位置关系(4)若E为B优弧ACO上一动点,联结AE/OE,问在抛物线上是否存在一点M,使MOA:AEO=2:3,若存在,试求点M的坐标;若不存在,试说明理由。25.(本小题满分7分)在坐标平面上,点P从点M(,1)出发,沿射线OM方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以OP为对角线的矩形OAPB的边长OA:OB=1:;过点O且垂直于射线OM的直线l与点P同时出发,且与点P沿相同的方向,以相同的速度运动。(1)在点P运动过程中,试判断AB与y轴的位置关系,并说明理由;(2)设点P与直线l都运动了t秒,求此时的矩形OAPB与直线l在运动过程中所扫过区域的重叠部分的面积S(用含t的代数式表示)。