《6正弦定理、余弦定理的应用举例(2).doc》由会员分享,可在线阅读,更多相关《6正弦定理、余弦定理的应用举例(2).doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
正弦定理、余弦定理的应用例1:渔船甲位于岛屿A的南偏西60方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上,此时到达C处(1) 求渔船甲的速度;(2) 求sin 的值例2:如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60,在山顶C测得塔顶A的俯角为45,已知塔高AB20 m,求山高CD例3:如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得BCD,BDC,CD,并在点C测得塔顶A的仰角为,求塔高AB例4:如图,甲船以每小时30海里的速度向正北方航行,乙船按固定方向匀速直线航行当甲船位于A1处时,乙船位于甲船的北偏西105方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120方向的B2处,此时两船相距10海里问:乙船每小时航行多少海里?例5:如图,A,B是海面上位于东西方向相距5(3)海里的两个观测点现位于A点北偏东45,B点北偏西60的D点有一艘轮船发出求救信号,位于B点南偏西60且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?