《浅谈数学课堂中学生发散思维的培养方法(正稿).doc》由会员分享,可在线阅读,更多相关《浅谈数学课堂中学生发散思维的培养方法(正稿).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、省级课题研究成果浅谈数学课堂中学生发散思维的培养方法府谷县同心路初级中学数学教研组 李永玲 新的课程改革注重学生的自主学习,而长期以来,小学数学集中思维为主要思维方式,课本上的题目和材料的呈现过程大都循着一个模式,学生惯于按照书上写的教师教的方式去思考问题,用符合常规的思路和方法解决问题,对于基础知识、基本技能的掌握是必要的,但对于小学生学习数学兴趣的激发、智力的发展,显然是有些勉强,这样教条似的教学也就很难变学生的“要我学”为“我要学”。所以我们要启迪学生的思维。 思维能力是一切能力的驱动,它是通过对事物的感知、表象进行分析、概括、归纳而获得事物本质的能力。一个人的思维能力高低,不仅与知识理
2、论的深浅、年龄有关,而且与思维方式有关。在数学教学中,学生思维能力的培养尤为重要,那如何在数学课堂中培养学生的思维呢?现阐述如下: 1、从实践中培养兴趣,激活思维 兴趣是最大的动力源泉,有兴趣才有求知欲,学生学习才积极,勇于钻研。1.1 、用实践操作唤起学生的兴趣 无论是教师动手操作还还是学生动手操作,都能唤起学生的兴趣,保持学生集中的注意力。如在推导圆的面积公式时,通过让学生自己亲手制作一个圆,并将其分割成若干个小扇形,在拼合成一近似的平行四边形,让学生观察拼合后的图形与原图形比较,有什么异同点, 从而找出规律,得出圆的面积公式。然后再出习题就要好的多。1.2、通过多媒体教学,激发学生的兴趣
3、。多媒体是集:声、光、动画为一体、化抽象为具体、变枯燥为有趣、化静为动,这些对学生思维的发展,提供了良好的环境。例如:两位数减一位的退位减法,28-3的教学中,计算机画面上首先出现小棒,两捆加三根怎样减去八根,学生可以先自己先动手操作,试一试怎样减,探求方法,然后,按一下正确答案,出现的画面就会是两捆零三根小棒和一只小熊,按照学生摆的方法,小熊把一捆小棒拆开,然后和三根小棒放在一起,去掉八根小棒,等于十五根小棒。小熊边做边说,在加上适当音响和音乐。在这个过程学生可以亲自操作,可以亲眼目睹这个过程,认识两位数减一位数退位减法的关键就是不够减的向前一位借一,在个位上加十再减。这一系列的动态过程中:
4、学生可以反复操作,抓住重点,从而得到正确的结论,学会知识,完成教学任务。这一环节,借助多媒体的色彩、声音、动画演示,不仅激发学生的学习兴趣,而且还可以启发学生的思维,提高教学质量。 2、运用类比归纳,挖掘学生创新思维 类比方法是根据两类物质之间一些相似性质从而推导出其它方面也类似的推理方法,在数学教学中运用类比使学生更容易发现新事物。 2.1、运用比较辨别,启迪学生思维想象如在教学了数的整除的知识后,可以出示了这样一道例题:“一个大于10的数,被6除余4,被8除余2,被9除余1,这个最小是几?” 应该说这道题是有一定的难度的,学生求解会感到无从下手,这时,再出示了这样一题比较题:“一个数被6除
5、余10,被8除余10,被9除余10,这个数最小是几?”这道题学生很快能求出答案:这个数即是6、8和9的最小公倍数多10,6、8和9的最小公倍数为72,因此这个数为:721082。这样通过让学生展开联想和比较,不但可以提高学生的想象能力,同时也能提高学生的创新思维能力。2.2、通过归纳推导,培养学生创新思维 如:教学梯形面积计算公式的推导,学生可借助三角形的面积计算公式进行梯形面积计算公式的推导,让学生模仿已有的经验去获取新知。教师设计一下的教学程序:(1)填空后说说三角形面积公式的推导过程。两个完全一样的三角形面积公式能拼成一个()形。这个平行四边形的底等于(),这个平行四边形的高等于()。因
6、为每个三角形的面积等于拼成的平行四边形面积的(),所以三角形的面积=()。(2)边操作边想,填空后说说梯形面积公式的推导过程。两个完全一样的梯形可以拼成一个()形。这个平行四边形的底等于(),这个平行四边形的高等于()。因为每个梯形的面积等于拼成的平行四边形面积的(),所以梯形的面积=()。这样,不仅使学生能熟练掌握已学过的平面图形的面积公式,同时,也培养和提高了学生的创新能力。 3、巧设探索性问题,诱导发散思维的发展 在教学实践中,如能让学生置身于逼真的问题情境中,体验数学学习与实际生活的联系,学生也会品尝到用所学知识解释生活现象以及解决实际问题的乐趣,感受到借助数学的思想方法,会真正体会到
7、学习数学的乐趣。因此,在教学实践中,尽量做到在数学教学过程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系与区别。 3.1、设计开放性习题,让学生在实践中提高创新思维。 如在教学了百分数应用题的这样一题:张教老师欲购买一台笔记本电脑,为了尽可能少花钱,他考察了A、B、C三个商场,他想购买的笔记本电脑三个商场都有,且标价都有是9980元,不过三个商场的优惠方法各不相同,具体如下: A商场:全场九折。 B商场:购物满1000元送100元。 C商场:购物满1000元九折,满10000元八八折。 张老师应该到哪个商场去购买电脑?请说明理由。 这道题
8、显然不同于一般的应用题,因此可以启发学生,应该充分考虑如何才能做到尽可能少花钱这一个特定的条件去进行分析与解答。学生进行了认真的分析和讨论,最后得出如下的结论: 因为每台电脑的价格均为9980元,而去A商场是全场九折,因此张老师如果去A商场购电脑,那么张老师应该付:998090%8982(元)。 因为B商场是购物满1000元送100元,张老师如果只买电脑,需付:99809009080(元);张老师如果再买其它的物品凑满10000元,需付:1000010009000(元)。 因为C商场是购物满1000元九折,满10000元八八折,张老师在C商场购买电脑时,只要再多买20元物品,即凑满10000元
9、,最多需付:1000088%8800(元)。 因此,张老师去C商场购电脑花钱最少。 3.2、培养学生打破传统的思维模式,开启学生创新思维大门 创新思维的培养,要让学生敢于打破传统的思维模式,对一些问题提出具有独特的的、富有说服力的新观点和新境界,开启学生的创新思维大门。 思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。3.2.1、一题多解提倡一题多解,可以活跃学生的思维,使相关知识相互沟通,从而克服学生解题思路
10、狭窄,解法单一等缺点,培养学生思维的灵活性。例如:“甲绳长3.4米,乙绳长2.8米,两绳平均长多少米?在老师的鼓励和引导下,学生可以给出多种不同解法,如:(3.4+2.8)2 (3.4-2.8)2+2.8 3.4-(3.4-2.8)2 3.42+2.82通过比较,学生不仅知道哪种法最优,还加深了对平均问题的认识。让学生进行多种解题思路的讨论,能使学生解题思路敏捷,既达到一题多解的效果,又训练了学生思维的广阔性。在应用题解题中,从多角度进行迁移深化,由此及彼,有利于学生发散思维的训练。3.2.2、一题多问一题多问的主要意图是培养学生全面地看待问题,以点带面。例如:分数的初步认识设计了这样一题“发
11、散思维训练”:妈妈把生日蛋糕平均切成10块,小明吃了其中的4块,小明吃了这块蛋糕的几分之几?组织讨论 :. 如果余下的平均分给爸爸、妈妈吃,爸爸和妈妈分别吃蛋糕的几分之几? .小明吃了这块蛋糕的几分之几,爸爸和妈妈吃了几分之几,谁吃的多?为什么?. 如果你是小明,你觉得这样分合理吗?你会怎样分这块蛋糕?从知识技能的角度看,这一练习充分挖掘了题目的智力因素,激活了学生的思维,达成了知识的掌握与应用这一目标。就人文精神来讲,题目紧密联系学生的生活实际,有机地对学生进行了思想品德教育,尊敬长辈、人文关怀等意识无声地渗入了学生的心灵。 6 3.2.3、一题多议有的题目,是同一个式子,有不同的表述意义:
12、例如:算式567,就有许多种表述。1、把56平均分成7份,每份是多少?2、56里包含几个7?3、7除56,所得的商是多少?4、56是7的几倍?5、7与一个数的乘积是56,求这个数?6、多少个7相加的和是56?7、我有56块糖,平均分给7个小朋友,每个人得到多少块?这样就可以从多角度理解式子的意思了。3.2.4、一题多变一题多变就是在同一情境中,进行不同结构应用题解答的训练。通常采用题组进行训练。例如:1、一根钢管长18米,截去1/3,还剩几米? 2、一根钢管长18米,截去1/3米,还剩几米?题组中的两题的情境相同,结构相似,数据也基本相同,只有通过细心的观察、比较、分析,才能发现它的差异,从而培养学生思维的准确性和深刻性。 综上所述,在小学数学教学中,可采用多种多样的方法激发学生的兴趣,启迪学生的思维,培养学生分析问题与解答问题的能力,我们每一个教育工作者,一定要重视学生思维能力的培养,为学生创设宽松、民主、丰富多采的创新气氛;为学生提供思考、探索和创新的具有开放性和选择性的最大空间,我们就能引导学生自己发现问题,进行创造性学习,培养创新思维,为成为适应二十一世纪科技发展所需要的人才奠定基础。8