《三角形全等判定的案例.doc》由会员分享,可在线阅读,更多相关《三角形全等判定的案例.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、全等三角形的判定教学目的:使学生能够掌握三个公理一个定理来判定两个三角形全等。教学重点:三个公理及一个定理的应用教学难点:判定方法的应用教学过程:复习:1. 全等三角形有什么性质2. 全等三角形的判定方法除定义以外,还有哪些判定方法。判定三角形全等的方法总结在一个三角形的三条边,三个角中任取三个元素,可以有下列组合;SAS、SSA、ASA、AAS、SSS、AAA,但其中SSA和AAA不能判定三角形全等。3. 如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等。(2)可以从已知条件出发,看已知条件确定哪两个三角形
2、可证它的全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,可采用添加辅助线的方法,构造三角形全等。【例题解析】例1. 已知:如图所示,AB=AC,求证:证明:证明两个三角形全等时要特别注意证明的正确书写格式,同时要注意证题时做到步步有根据,书写时应把对应顶点写在对应位置上。例2. 如图所示,已知:AF=AE,AC=AD,CF与DE交于点B。求证:。分析:要用“SAS”公理证两个三角形全等,条件只缺AF与AC的夹角、AE与AD的夹角相等,观察图形可知正好是待证全等的两个三角形的公共角,并且是AF与AC的夹角,AE与AD的夹角。证明:在A
3、CF和ADE中,例3. 如图(1)所示,AC=BD,AB=DC,求证:。图(1)分析1:要证,可以观察与所在的ABE与DCE是否全等。由已知判定条件不足,若将及已知AC、BD放在同一对三角形中问题可获解决,这一对三角形是:ABD与DCA。故要连结AD,再证。证法1:连结AD(如图(2)所示)图(2)在ABD和DCA中分析2:分析本题条件AB、AC在ABC中,DC、BD在DCB中,而AC=BD,AB=DC,故可连结BC,证,再运用角的和差证。证法2:连结BC在证明:(1)本题第1种分析方法是从条件出发结合已知得到应构造,辅助线是连结AD;第2种分析方法是从已知条件入手,发现条件集中在两个三角形A
4、BC及DCB。连结BC,证,这两种分析方法在今后证题中经常运用。例4. 如图所示,垂足分别为D、E,BE与CD相交于点O,且,求证:BD=CE。分析:要证BD=CE,可证,或证AB=AC,AD=AE即可。证明:在BOD和COE中,说明:本题证得能得到AD=AE,可进一步证明得AB=AC,故,即BD=CE,事实上,本题ADO与AEO,ABO与ACO,BDO与CEO中,有一对三角形全等可推得其余两对三角形全等。【模拟试题】(答题时间:30分钟)1. 三个角对应相等的两个三角形全等。( )2. 三条边对应相等的两个三角形全等。( )3. 两条直角边对应相等的两个直角三角形全等。( )4. 腰长相等且
5、有一个角是30的两个等腰三角形全等。( )5. 腰长相等且有一个角是120的两个等腰三角形全等。6. 有两条边长分别是2cm和3cm,且一个角是40的两个三角形全等。7. 有一边对应相等的两个等边三角形全等。( )8. 如果,D”在B”C”上,且BD=B”D”,那么一定有AD=A”D”。( )9. 如果,D在BC上,D”在B”C”上,且,那么一定有。( )10. 有一边重合,其余两边对应平行的两个三角形全等。( )11. 下列命题中,真命题是( )A. 面积相等的两个三角形是全等三角形B. 有两边及其中一边的对角对应相等的两个三角形全等C. 全等三角形的周长相等D. 有一条直角边对应相等的两个
6、三角形全等12. 在ABC和A”B”C”中,(1)AB=A”B”,(2)BC=B”C”,(3)AC=A”C”,(4),(5),(6),则下列条件不能保证的是( )A. 具备条件(1),(2)和(3)B. 具备条件(1),(2)和(5)C. 具备条件(1),(5)和(6)D. 具备条件(1),(2)和(4)13. 如图所示,AF平分,连结BF,CF并延长交AC,AB于E、D两点,则此图形中全等三角形的个数为( )A. 2对 B. 3对C. 4对 D. 5对14. 下列图形中,全等的是( )A. 两个含30角的直角三角形B. 腰长对应相等的两个等腰三角形C. 周长为10cm的两个等边三角形D. 有一个钝角相等的两个等腰三角形15. 如图所示,AC=AD,BC=BD,CD交AB于E,F是AB上一点,则图中全等的三角形有( )A. 1对 B. 4对C. 6对 D. 10对16. 如图所示,AB=CD,AD=BC,O为BD上任意一点,过O点的直线分别交AD,BC于M、N点。求证:。17. 如图所示,已知AB=CD,BC=DA,E、F是AC上的两点,且AE=CF,求证:BF=DE。【试题答案】1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. C 12. D 13. C 14. C 15. C16. 证明:在ABD与CDB中17. 证明:在ABC和CDA中