《专题05 圆锥曲线的光学性质问题(原卷版).docx》由会员分享,可在线阅读,更多相关《专题05 圆锥曲线的光学性质问题(原卷版).docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 专题5、圆锥曲线的光学性质从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。从八省联考的趋势看圆锥曲线的光学性质和新定义问题必将在高考占一席之地。因此在高考数学复习中,通过让学生研究圆锥曲线的光学性质和新定义的相关问题,快速提高学生的数学解题能力,增强学生的信心,备战高考1)椭圆的光学性质:1(2020.河北衡水中学高三模拟)人造地球卫星绕地球运行遵循开普勒行星运动定律:如图,卫星在以地球的中心为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地心的连线)在
2、相同的时间内扫过的面积相等设该椭圆的长轴长、焦距分别为,.某同学根据所学知识,得到下列结论:卫星向径的取值范围是;卫星向径的最小值与最大值的比值越大,椭圆轨道越扁卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间;卫星运行速度在近地点时最小,在远地点时最大.其中正确的结论是( )ABCD2(2021全国高三模拟)如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线的方程为,其左、右焦点分别是,直线与椭圆切于点,且,过点且与直线垂直的直线与椭圆长轴交于点,则( )ABCD3(2020成都七中高三模拟)椭圆
3、有如下光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点,已知椭圆,其长轴的长为,焦距为,若一条光线从椭圆的左焦点出发,第一次回到左焦点所经过的路程为,则椭圆的离心率为_.2)双曲线的光学性质1(2020江苏省镇江中学高三月考)智慧的人们在进行工业设计时,巧妙地利用了圆锥曲线的光学性质,比如电影放映机利用椭圆镜面反射出聚焦光线,探照灯利用抛物线镜面反射出平行光线.如图,从双曲线右焦点发出的光线通过双曲线镜面反射出发散光线,且反射光线的反向延长线经过左焦点.已知双曲线的离心率为,则当入射光线和反射光线互和垂直时(其中为入射点),的大小为( )ABCD2(2020福建
4、高三期末)光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点,的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,此光线从点发出,经两次反射后又回到了点,历时秒;若,则与的离心率之比为( )ABCD3(2020安徽省高三期末)光线被曲线反射,等效于被曲线在反射点处的切线反射已知光线从椭圆的一个焦点出发,被椭圆反射后要回到椭圆的另一个焦点;光线从双曲线的一个焦点出发被双曲线反射后的反射光线等效于从另一个焦点发出;椭圆与双曲线有公共焦点(如
5、图),现一光线从它们的左焦点出发,在椭圆与双曲线间连续反射,则光线经过次反射后回到左焦点所经过的路径长为 ( )ABCD4(2020广东省高三模拟)阅读下列材料,解决数学问题圆锥曲线具有非常漂亮的光学性质,被人们广泛地应用于各种设计之中,比如椭圆镜面用来制作电影放映机的聚光灯,抛物面用来制作探照灯等,它们的截面分别是椭圆和抛物线双曲线也具有非常好的光学性质,从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,它们好像是从另一个焦点射出的一样,如图(1)所示反比例函数的图像是以直线为轴,以坐标轴为渐近线的等轴双曲线,记作C()求曲线C的离心率及焦点坐标;()如图(2),从曲线C的焦
6、点F处发出的光线经双曲线反射后得到的反射光线与入射光线垂直,求入射光线的方程3)抛物线的光学性质1(2020绥阳县绥阳中学高考模拟)抛物线有如下光学性质:过焦点的光线(光线不同过抛物线对称轴上任意两点)经抛物线反射后平行于抛物线的对称轴;平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.若一条平行于轴的光线从射出,经过抛物线上过的点反射后,再经抛物线上的另一点反射出,则直线的斜率为ABCD2(2020山东高三)抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点已知抛物线的焦点为F,一条平行于
7、x轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则的周长为( )ABCD3(2020湖南高三(文)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线,如图一平行于轴的光线射向抛物线,经两次反射后沿平行轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为_4(2020重庆高三月考)光学是当今科技的前沿和最活跃的领域之一,抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有抛物线,一平行于轴的光线从上方射向抛物线上的点,经抛物线2次反射后,又沿平行于轴方向射出,若两平行光线间的
8、最小距离为8. (1)求抛物线的方程;(2)若直线与抛物线交于,两点,以点为顶点作,使的外接圆圆心的坐标为,求弦的长度.4)圆锥曲线的新定义问题1(2020内蒙古高三期末)一般地,我们把离心率为的椭圆称为“黄金椭圆”对于下列命题:椭圆是黄金椭圆;若椭圆是黄金椭圆,则;在中,且点在以为焦点的黄金椭圆上,则的周长为;过黄金椭圆的右焦点作垂直于长轴的垂线,交椭圆于两点,则;设是黄金椭圆的两个焦点,则椭圆上满足的点不存在其中所有正确命题的序号是_(把你认为正确命题的序号都填上)2已知椭圆:,其焦距为,若,则称椭圆为“黄金椭圆”.黄金椭圆有如下性质:“黄金椭圆”的左、右焦点分别是,以,,为顶点的菱形的内
9、切圆过焦点,.(1)类比“黄金椭圆”的定义,试写出“黄金双曲线”的定义;(2)类比“黄金椭圆”的性质,试写出“黄金双曲线”的性质,并加以证明.3(2020.北京市高三模拟)如果从北大打车到北京车站去接人,聪明的专家一定会选择走四环。虽然从城中间直穿过去看上去很诱人,但考虑到北京的道路几乎总是正南正北的方向,事实上不会真有人认为这样走能抄近路。在城市中,专家估算两点之间的距离时,不会直接去测量两点之间的直线距离,而会去考虑它们相距多少个街区。在理想模型中,假设每条道路都是水平或者竖直的,那么只要你朝着目标走(不故意绕远路),不管你这样走,花费的路程都是一样的。出租车几何学(taxicab geo
10、metry),所谓的“出租车几何学”是由十九世纪的另一位真专家赫尔曼-闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样。只是直角坐标系内任意两点,定义它们之间的一种“距离”:,请解决以下问题:(1)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点的“距离”均为的“圆”方程,并作出大致图像;(2)在出租车几何学中,到两点、“距离”相等的点的轨迹称为线段的“垂直平分线”,已知点,;写出在线段的“垂直平分线”的轨迹方程,并写出大致图像;求证:三边的“垂直平分线”交于一点(该点称为的“外心”),并求出的
11、“外心”.玩转练习1(2020河北辛集中学高三月考)抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为( )ABCD2(2020湖南高三(文)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有抛物线,如图,一平行轴的光线射向抛物线上的点,经过抛物线的焦点反射后射向抛物线上的点,再反射后又沿平行轴方向射出,若两平行光线间的最小距离为6,则此抛物线的方程为
12、_. 3(2021湖北高二期中)综合应用抛物线和双曲线的光学性质,可以设计制造反射式天文望远镜.这种望远镜的特点是,镜筒可以很短而观察天体运动又很清楚,例如,某天文仪器厂设计制造的一种反射式望远镜,其光学系统的原理如图(中心截口示意图)所示,其中,一个反射镜弧所在的曲线为抛物线,另一个反射镜弧所在的曲线为双曲线的一个分支,已知、是双曲线的两个焦点,其中同时又是抛物线的焦点,也是双曲线的左顶点.若在如图所示的坐标系下,弧所在的曲线方程为标准方程,试根据图示尺寸(单位:cm),写出反射镜弧所在的抛物线方程为_.4(2020乐清市知临中学高二期末)椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经
13、椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:,点A、B是它的两个焦点,当静止的小球放在点A处,从点A沿直线出发,经椭圆壁反弹后,再回到点A时,小球经过的最短路程是( ).A20 B18 C16 D以上均有可能5(2020广东高三月考)椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点。现在设有一个水平放置的椭圆形台球盘,满足方程:, 点是它的两个焦点,当静止的小球放在点处,从点沿直线出发,经椭圆壁反弹后,再回到点时,小球经过的最长路程是( )A20 B18 C16 D146(2020山西高三期末)椭圆具有如下
14、的光学性质:从一个焦点发出的光线经过椭圆内壁反射后恰好穿过另一个焦点现从椭圆的左焦点发出的一条光线,经过椭圆内壁两次反射后,回到点,则光线所经过的总路程为_7沿直线y2发出的光线经抛物线y2ax反射后,与x轴相交于点A(2,0),则抛物线的准线方程为_(提示:抛物线的光学性质:从焦点发出的光线经抛物线反射后与轴平行)8椭圆有如下光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一个焦点,已知椭圆长轴长为,焦距为,若一条光线从椭圆的左焦点出发,第一次回到该焦点所经过的路程为,则椭圆的离心率为_.9椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经
15、过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径忽略不计)从点A沿直线出发,经椭圆壁反射后第一次回到点A时,小球经过的路程是_.10抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必经抛物线的焦点,已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的长度为_11.(2020湖北省高三期中)椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且
16、在传播过程中不会衰减,椭圆的方程为,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程不可能为( )A2B4C6D812双曲线的光学性质是:从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上.已知双曲线:的左、右焦点分别为,从发出的光线射向上的点后,被反射出去,则入射光线与反射光线夹角的余弦值是( )ABCD13(2020广东高三月考)椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点。现在设有一个水平放置的椭圆形台球盘,满足方程:, 点是它的两个焦点,当静止的小球放在点处,从点沿直线出发,经椭圆壁反弹后,
17、再回到点时,小球经过的最长路程是( )A20 B18 C16 D1414椭圆满足这样的光学性质:从椭圆的一个焦点发射的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点现有一个水平放置的椭圆形台球盘,满足方程x264+y228=1,点A,B是它的两个焦点当静止的小球从点A开始出发,沿直线运动,经椭圆壁反射后再回到点A时,此时小球经过的路程可能是 ( )A32或4或16-47 B16+47或28或16-47 C28或4或16+47 D32或28或415(2020上海市高三期中)出租车几何学是由十九世纪的赫尔曼闵可夫斯基所创立的.在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形
18、,角度大小的定义也和原来一样,对于直角坐标系内任意两点、定义它们之间的一种“距离”(“直角距离”):,请解决以下问题:(1)求线段(,)上一点到原点的“距离”;(2)求所有到定点的“距离”均为2的动点围成的图形的周长;(3)在“欧式几何学”中有如下三个与“距离”有关的正确结论:平面上任意三点A,B,C,;平面上不在一直线上任意三点A,B,C,若,则是以为直角三角形平面上存在两个不同的定点A,B,若动点P满足,则动点P的轨迹是的垂直平分线上述结论对于“出租车几何学”中的直角距离是否还正确,并说明理由.16(2020上海市建平中学高三月考)在平面直线坐标系中,定义为两点的“切比雪夫距离”,又设点P及上任意一点Q,称的最小值为点P到直线的“切比雪夫距离”记作给出下列四个命题:( )对任意三点A、B、C,都有已知点P(3,1)和直线则到原点的“切比雪夫距离”等于的点的轨迹是正方形;定点动点满足则点P的轨迹与直线(为常数)有且仅有2个公共点其中真命题的个数是( )A4B3C2D1