《2022年风电机的基本原理以及基本组成结构 .pdf》由会员分享,可在线阅读,更多相关《2022年风电机的基本原理以及基本组成结构 .pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、风电机的基本原理和部件组成如下:大部分小功率风电机具有恒定转速(定速定桨),叶片尖端的转速为64 米/秒,在叶轮轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。但是,随着大功率风电机的研发并投入使用,风电机的转速不再恒定(变速变桨),叶片尖端的转速也随着叶轮转速的变化和叶片长度的不同而变化。所以站长推荐对不同类型的风电机单独查看其技术数据。(请参考产品信息)风电机结构一般风电机结构图(双馈机型)(1.轮毂 2.齿轮箱 3.机舱罩 4.联轴器 5.电控系统 6.发电机 7.冷却器 8.泵站 9.偏航驱动 10.偏航制动 11.偏航轴承 12.底座 13.弹性底座 14.叶片)机舱:
2、机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱前端是风电机叶轮,即叶片、轮毂和轴。叶片:捉获风,并将风力传送到轮毂。在 600 千瓦级别的风电机上,每个叶片的长度大约为 20 米;而在 5 兆瓦级别的风电机上,叶片长度可以达到60 米。叶片的设计很类似飞机的机翼,制造材料却大不相同,多采用纤维而不是轻型合金。大部分叶片用玻璃纤维强化塑料(GRP)制造。采用碳纤维或芳族聚酰胺作为强化材料是另外一种选择,但这种叶片对大型风电机是不经济的。除此之外,已经有厂家用竹子做叶片,实际运行情况还有待试验。木材、环氧木材、或环氧木纤维合成物目前还没有在叶片市场出现,尽管
3、目前在这一领域已经有了发展。钢及铝合金分别存在重量及金属疲劳等问题,目前只用在小型风电机上。实际上,叶片设计师通常将叶片最远端的部分的横切面设计得类似于正统飞机的机翼。但是叶片内端的厚轮廓,通常是专门为风电机设计的。为叶片选择轮廓涉及很多折衷的方面,诸如可靠的运转与延时特性。叶片的轮廓设计,即使在表面有污垢时,叶片也可以运转良好。名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 5 页 -轮毂:轮毂附着在风电机的主轴上。主轴:风电机的主轴将轮毂与变速齿轮箱连接在一起。在一般的风电机上,叶轮转速相当慢,大约为 19 至 30 转每分钟。主轴一般是中空的,中间有用于液压系统的导管,来激
4、发空气动力闸的运行。齿轮箱:齿轮箱连接主轴和高速轴的变速装置,它可以将高速轴的转速提高至主轴的 n 倍。(半直驱 n=10左右,双馈机型 n=50-120 之间;直驱机型没有齿轮箱。)高速轴及其机械闸:高速轴的额定转速按照不同的增速比,有 1500 转/分钟、1000转/分钟运转、300转/分钟等。双馈机型和半直驱机型中由高速轴驱动发电机,直驱机型中主轴直接驱动发电机。高速轴上一般装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。发电机:风电机发电机将机械能转化为电能。风电机上的发电机与普通电网上的发电设备相比,有所不同:风电机发电机需要在波动的机械能条件下运转。通常使用的风电机发电机
5、是感应电机或异步发电机,最新的风电机已经开始使用永磁同步发电机。目前世界上单机最大电力输出超过6000 千瓦(德国enercon 的E-112/114)。主控系统:主控系统是用于调整风电机最佳工作状态的控制系统,分别是用于控制风电机机舱部分的偏航系统(YAW 系统)和控制叶片切割角度(攻角)的变桨系统(Pitch或者 Stall)。YAW 系统借助电动机转动机舱,以使叶轮调整风向的最佳切入角度。该系统由电子控制器操作,电子控制器可以通过风向标来探知风向。通常,在风改变其方向时,风电机一次只会偏转几度。关于叶片攻角的调整:小功率级别的风电机都是通过统一的变桨系统调整所有叶片的角度,而最新的风电机
6、大都是每个叶片设置单独的变桨系统。电子控制器:一般都使用一台或多台不断监控风电机状态的计算机,用于控制偏航装置。一旦风电机发生故障(即齿轮箱或发电机的过热),该控制器可以自动停止风电机的转动,并通过网络信号通知风电机管理中心。液压系统:用于重置风电机的空气动力闸。冷却系统:发电机在运转时需要冷却。在大部分风电机上,发电机被放置在管内,并使用大型风扇来空冷,除此之外还需要一个油冷却元件,用于冷却齿轮箱内的油;还有一部分制造商采用水冷。水冷发电机更加小巧,而且电效高,但这种方式需要在机舱内设置散热器,来消除液体冷却系统产生的热量。一些新型风电机也采用水冷和风冷并用系统(比如德国Multibrid的
7、 M5000)。从外形上看,空冷发电机一般为长方体形,水冷发电机一般为圆柱形。机塔:风电机塔载有机舱及叶轮。通常高的塔具有优势,因为离地面越高,风速越大。600 千瓦风电机的塔高为40 至 60 米,5 兆瓦级别的塔高则超过100 米。根据底座的不同,机塔可以为管状塔筒,也可以是桁架。塔筒对于维修人员更为名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 5 页 -安全,因为他们可以通过内部的梯子到达塔顶。桁架结构的机塔优点在于它重量轻,技术相对成熟(与海上石油钻井台原理相同)。基础:早期小功率的风电机基础和机塔是结合到一起的,随着风电机单机功率越来越大,机塔也越来越长,对机塔底部的
8、力学要求也越来越多,越来越复杂,所以目前的技术发展趋势是将基础从机塔中分离出来单独制造。目前常见的基础结构包括直杆式、三脚架、桁架、重力式、吸盘式以及一些浮力基础。风速计及风向标:用于测量风速及风向。输出电压欧洲风电机通常产生690 伏特(美国风电机通常为575 伏特)的三相交流电,电流通过风电机旁(或在塔内)的变压器,电压被提高至一万至三万伏,这取决于当地电网的标准。除此之外,还有部分风机采用高压或者中压电机发电,发电机直接发出超过1 万伏的高压电或者3000 伏左右的中压整机制造商可以提供50赫兹风电机类型(用于世界大部分的电网),或60 赫兹类型(用于美国电网)。发电机电网的设计风电机可
9、以使用同步或异步发电机,并直接或非直接地将发电机连接在电网上。直接电网连接指的是将发电机直接连接在交流电网上。非直接电网连接指的是,风电机的电流通过一系列电力设备,经调节与电网匹配。采用异步发电机,这个调节过程自动完成。除了上述零部件之外,现代最新的风电机都带有十分复杂的控制系统,拆装维护都需要专门的公司来进行。本站产品信息内会逐渐的完善风电机生产商和维护维修公司的信息。如果您没有找到您所需要的信息,请您联系站长,我们会尽快帮您整理好您所需要的资料关于风电机设计的一些问题:为什么现代风机多是三个叶片?这里涉及到一个概念:叶尖速比,也就是风机叶片尖端速度与正常风速之间的比值。为了使风机的能量转化
10、效率系数更高,风机设计中尽量采用更大的叶尖速比,也就是叶片越少越好;另一方面,叶片越少,叶片的转速就要越高,从而切割空气产生的噪音就会越大。另外,受制造工艺的限制,叶片越少,可靠运行的叶片长度也会越短,从而捕获风能的能力也会降低。经过实践,两个叶片和三个叶片的风电机可以达到的转化效率最高;而三个叶片的设计由于可以显著的降低噪音、启动无死角、力学结构优势明显等超过了两叶片设计的应用。为什么转子叶片呈螺旋状?大型风电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转
11、。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 5 页 -为什么要使用齿轮箱?为什么我们不能通过主轴直接驱动发电机?风电机叶轮旋转产生的能量,通过主轴、齿轮箱及高速轴传送到发电机。使用齿轮箱,可以将风电机转子上的较低转速、较高转矩,转换为用于发电机上的较高转速、较低转矩(更低的转矩,更高的速度)。风电机上的齿轮箱,通常在转子及发电机转速之间具有单一的齿轮比。对于 600 千瓦或 750 千瓦机器,齿轮比大约为 1 比 50。如果我们使用普通发电机,并使用两个、四个或六个电极直接连接在50 赫兹交流三相
12、电网上,我们将不得不使用转速为1000 至 3000 转每分钟的风电机。对于43 米转子直径的风电机,这意味着转子末端的速度比声速的两倍还要高。另外一种可能性是建造一个带许多电极的交流发电机。但如果你要将发电机直接连在电网上,你需要使用200 个电极的发电机,来获得30 转每分钟的转速。另外一个问题是,发电机转子的质量需要与转矩大小成比例。因此直接驱动的发电机会非常重。偏航装置系统是怎么运行的?偏航装置大体上可以分成三部分:偏航误差当转子不垂直于风向时,风电机存在偏航误差。偏航误差意味着,风中的能量只有很少一部分可以在转子区域流动。如果只发生这种情况,偏航控制将是控制向风电机转子电力输入的极佳
13、方式。但是,转子靠近风源的部分受到的力比其它部分要大。一方面,这意味着转子倾向于自动对着风偏转,逆风或顺风的汽轮机都存在这种情况。另一方面,这意味着叶片在转子每一次转动时,都会沿着受力方向前后弯曲。存在偏航误差的风电机,与沿垂直于风向偏航的风电机相比,将承受更大的疲劳负载。偏航机构几乎所有水平轴的风电机都会强迫偏航。即,使用一个带有电动机及齿轮箱的机构来保持风电机对着风偏转。750千瓦风电机上的偏航机构上可以看到环绕外沿的偏航轴承,及内部偏航马达及偏航闸的轮子。几乎所有逆风设备的制造商都喜欢在不需要的情况下,停止偏航机构。偏航机构由电子控制器来激发。电缆扭曲计数器电缆用来将电流从风电机运载到塔
14、下。但是当风电机偶然沿一个方向偏转太长时间时,电缆将越来越扭曲。因此风电机配备有电缆扭曲计数器,用于提醒操作员应该将电缆解开了。类似于所有风电机上的安全机构,系统具有冗余。风电机还会配备有拉动开关,在电缆扭曲太厉害时被激发。电机为什么不设在地1)这里所说的风电机结构,都是指的并网型风力发电机,更准确的说是那种由风车演化来的三叶片(也有二叶片的)横轴风力发电机。这种风力发电机的基本原理就是风推动叶片转动,叶片连接转子,转子通过轴将动能传动到发电机芯,从而实现动能到电能的转化过程。在这个前提之下,从叶片到发电机芯的传动步骤越多,损失的能量也就越多。正是因为这个原因,很多新型的风力发电机甚至放弃了变
15、速箱。我们知道,任何一种能量的传输,无论是机械传动还是液压传动,名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 5 页 -或者电力传输,传输的过程中都有能量损失,而且传输的距离越长,损失也越大。在一定的距离内,电力传输的损失是最小的,而机械传动的损失最大,这就是为什么不能把大型并网发电机的发电机芯装在地面,并通过机械传动轴来传动了。2)除了常见的三叶片横轴风力发电机,还有很多其他设计的风力发电机。其中有一种设计就是垂直轴的,但这种风电机一般做不大,或者非常占用空间。德国不莱梅港有一家专门用于从事家用风电机生产研发的风电机公司,他们设计了一种风电机,去年申请了专利,最高级别的功率已经达到1 兆瓦。这种风电机很小,需要安装在建筑物顶端,整机高度大概在 3-5 米,其中叶片有 5-6 片,垂直平行安装在转子上,通过转子推动垂直轴,而垂直轴直接连接在风电机底部的发电机,从而发电。据说这种设计效率很高,投资也非常小。名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 5 页 -