平行四边形全章教案.docx

上传人:叶*** 文档编号:40330766 上传时间:2022-09-09 格式:DOCX 页数:17 大小:131.76KB
返回 下载 相关 举报
平行四边形全章教案.docx_第1页
第1页 / 共17页
平行四边形全章教案.docx_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《平行四边形全章教案.docx》由会员分享,可在线阅读,更多相关《平行四边形全章教案.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、19.1.1 平行四边形及其性质(一)一、 教学目标:1 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质2 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证3 培养学生发现问题、解决问题的能力及逻辑推理能力二、 重点、难点1 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用2 难点:运用平行四边形的性质进行有关的论证和计算三、例题的意图分析 例1是教材P93的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答例2是补充的一道几何证明题,即让学生学会运用平行四边形

2、的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法此题应让学生自己进行推理论证四、课堂引入1我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形(2)表示:平行四边形用符号“”来表示如图,在四边形ABCD中,ABDC,ADBC,那么四边形ABCD是平行四边形平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”已知:如图ABCD,求证:ABCD,C

3、BAD,BD,BADBCD分析:作ABCD的对角线AC,它将平行四边形分成ABC和CDA,证明这两个三角形全等即可得到结论(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题) 五、例习题分析例1(教材P93例1) 例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE分析:要证AF=CE,需证ADFCBE,由于四边形ABCD是平行四边形,因此有D=B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF由“边角边”可得出所需要的结论证明略六、随堂练习 xk b1.c om1填空:(1)在ABCD中,A=,则B= 度,

4、C= 度,D= 度(2)如果ABCD中,AB=240,则A= 度,B= 度,C= 度,D= 度 (3)如果ABCD的周长为28cm,且AB:BC=25,那么AB= cm,BC= cm,CD= cm,CD= cm2如图4.39,在ABCD中,AC为对角线,BEAC,DFAC,E、F为垂足,求证:BEDF 平行四边形的性质(二)一、教学目标:1、理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质2、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题3、培养学生的推理论证能力和逻辑思维能力二、重点、难点重点:平行四边形对角线互相平分的性质,以及性质的应用难点:综合运

5、用平行四边形的性质进行有关的论证和计算三、例题的意图分析 本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等例1及后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的例2是教材P94的例2,这是复习巩固小学学过的平行四边形面积计算这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法四

6、、课堂引入1复习提问:(1)什么样的四边形是平行四边形?四边形及平行四边形的关系是:(2)平行四边形的性质:具有一般四边形的性质(内角和是)角:平行四边形的对角相等,邻角互补 边:平行四边形的对边相等 2【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心; (2)平行四边形的对角线互相平

7、分五、例习题分析例(教材P94的例2)已知四边形ABCD是平行四边形,AB10cm,AD8cm,ACBC,求BC、CD、AC、OA的长以及ABCD的面积分析:由平行四边形的对边相等,可得BC、CD的长,在RtABC中,由勾股定理可得AC的长再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底高(高为此底上的高),可求得ABCD的面积(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了)3.平行四边形的面积计算解略(参看教材P94)六、随堂练习 (一) 平行四边形的判定一、教学目

8、标:1在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法2会综合运用平行四边形的判定方法和性质来解决问题3培养用类比、逆向联想及运动的思维方法来研究问题二、重点、难点重点:平行四边形的判定方法及应用难点:平行四边形的判定定理及性质定理的灵活应用三、例题的意图分析 本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质及判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法例2及例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高

9、学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由四、课堂引入1欣赏图片、提出问题展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?

10、(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。平行四边形判定方法2 对角线互相平分的四边形是平行四边形。五、例习题分析例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF求证:四边形BFDE是平行四边形分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单六、随堂练习(二) 平行四边形的判定一、教学目标:1掌握用一组对边平行且相等

11、来判定平行四边形的方法2会综合运用平行四边形的四种判定方法和性质来证明问题3通过平行四边形的性质及判定的应用,启迪学生的思维,提高分析问题的能力二、重点、难点1重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法2难点:平行四边形的判定定理及性质定理的综合应用 三、例题的意图分析 本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力四、课堂引入1 平行四边形

12、的性质;2 平行四边形的判定方法;3 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形五、例习题分析例 已知:如图,ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F求证:四边形BEDF是平行四边形分析:因为BEAC于E,DFAC于F,所以BEDF需再证明BE=DF,这需要证明ABE及CDF全等,由角角边即可六、课堂练习1(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是( )(A)ABCD,AD=BC (B)A=B,C=D (C)AB=CD,AD=BC

13、 (D)AB=AD,CB=CD2已知:如图,ACED,点B在AC上,且AB=ED=BC, 找出图中的平行四边形,并说明理由3已知:如图,在ABCD中,AE、CF分别是DAB、BCD的平分线求证:四边形AFCE是平行四边形七、课后练习(三) 平行四边形的判定三角形的中位线一、教学目标:1.理解三角形中位线的概念,掌握它的性质2.能较熟练地应用三角形中位线性质进行有关的证明和计算3经历探索、猜想、证明的过程,进一步发展推理论证的能力4能运用综合法证明有关三角形中位线性质的结论理解在证明过程中所运用的归纳、类比、转化等思想方法二、重点、难点1重点:掌握和运用三角形中位线的性质2难点:三角形中位线性质

14、的证明(辅助线的添加方法) 三、例题的意图分析 例1是教材P98的例4,这是三角形中位线性质的证明题,教材采用的是先证明后引出概念及性质的方法,它一是要练习巩固平行四边形的性质及判定,二是为了降低难度,因此教师们在教学中要把握好度建议讲完例1,引出三角形中位线的概念和性质后,马上做一组练习,以巩固三角形中位线的性质,然后再讲例2例2是一道补充题,选自老教材的一个例题,它是三角形中位线性质及平行四边形的判定的混合应用题,题型挺好,添加辅助线的方法也很巧,结论以后也会经常用到,可根据学生情况适当的选讲例2教学中,要把辅助线的添加方法讲清楚,可以借助及多媒体或教具四、课堂引入1.平行四边形的性质;平

15、行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质及判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题)3创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?五、例习题分析 例1(教材P98例4) 如图,点D、E、分别为ABC边AB、AC的中点,求证:DEBC且DE=BC 分析:所

16、证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形六、课堂练习 矩形(一)一、教学目标:1掌握矩形的概念和性质,理解矩形及平行四边形的区别及联系2会初步运用矩形的概念和性质来解决有关问题3渗透运动联系、从量变到质变的观点二、重点、难点1重点:矩形的性质2难点:矩形的性质的灵活应用三、例题的意图分析例1是教材P104的例1,它是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用例2及例3都是补充的题目,其

17、中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式并能通过例2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目及证明题的方法四、课堂引入1展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演

18、示拉动过程如图)3再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状 随着的变化,两条对角线的长度分别是怎样变化的? 当是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质矩形性质1 矩形的四

19、个角都是直角矩形性质2 矩形的对角线相等五、例习题分析 例1 (教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,AOB=60,AB=4cm,求矩形对角线的长分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得OAB是等边三角形,因此对角线的长度可求七、课后练习1(选择)矩形的两条对角线的夹角为60,对角线长为15cm,较短边的长为( )(A)12cm (B)10cm (C)7.5cm (D)5cm2在直角三角形ABC中,C=90,AB=2AC,求A、B的度数3已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EAE

20、D4如图,矩形ABCD中,AB=2BC,且AB=AE,求证:CBE的度数 矩形(二)一、教学目标:1理解并掌握矩形的判定方法2使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力二、重点、难点1重点:矩形的判定2难点:矩形的判定及性质的综合应用三、例题的意图分析 本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的四、课堂引入1什么叫做平行四边形?什么叫做矩形?2矩形有哪些性质

21、?3矩形及平行四边形有什么共同之处?有什么不同之处?4事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法矩形判定方法1:对角钱相等的平行四边形是矩形矩形判定方法2:有三个角是直角的四边形是矩形(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了因为由四边形内角和可知,这时第四个角一定是直角)五、例习题分析 例1(补充)下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形; () (2)有四个角是直角的四边形是矩形; () (

22、3)四个角都相等的四边形是矩形; ()(4)对角线相等的四边形是矩形; ()(5)对角线相等且互相垂直的四边形是矩形; ()(6)对角线互相平分且相等的四边形是矩形; ()(7)对角线相等,且有一个角是直角的四边形是矩形; ()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;() (9)两组对边分别平行,且对角线相等的四边形是矩形 () 指出: (l)所给四边形添加的条件不满足三个的肯定不是矩形; (2)所给四边形添加的条件是三个独立条件,但若及判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论六、随堂练习 菱形(一)一、教学目的:1掌握菱形概念,知道菱形及平行四边形的关系2

23、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积3通过运用菱形知识解决具体问题,提高分析能力和观察能力4根据平行四边形及矩形、菱形的从属关系,通过画图向学生渗透集合思想二、重点、难点1教学重点:菱形的性质1、22教学难点:菱形的性质及菱形知识的综合应用 三、例题的意图分析 本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识及直角三角形知识来求菱形面积的实际应用问题此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识四、课堂引入1(复习)什么叫做平行四

24、边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2(引入)我们已经学习了一种特殊的平行四边形矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念菱形定义:有一组邻边相等的平行四边形叫做菱形【强调】菱形(1)是平行四边形;(2)一组邻边相等让学生举一些日常生活中所见到过的菱形的例子五、例习题分析例1(补充) 已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E 求证:AFD=CBE 证明:四边形ABCD是菱形, CB=CD, CA平分BCD BCE=DCE又 CE=CE,

25、BCECOB(SAS) CBE=CDE 在菱形ABCD中,ABCD, AFD=FDCAFD=CBE 例2 (教材P108例2)略六、随堂练习1若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 2已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积3已知菱形ABCD的周长为20cm,且相邻两内角之比是12,求菱形的对角线的长和面积4已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF求证:AEF=AFE 七、课后练习1菱形ABCD中,DA=31,菱形的周长为 8cm,求菱形的高2如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对

26、角线AC的长度;(2)菱形ABCD的面积 菱形(二)一、教学目的:1理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2在菱形的判定方法的探索及综合应用中,培养学生的观察能力、动手能力及逻辑思维能力二、重点、难点1教学重点:菱形的两个判定方法2教学难点:判定方法的证明方法及运用 三、例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成程度好一些的班

27、级,可以选讲例3四、课堂引入1复习(1)菱形的定义:一组邻边相等的平行四边形; (2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形注意此方法包括两个条件:(1)是一个

28、平行四边形;(2)两条对角线互相垂直 通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形五、例习题分析例1 (教材P109的例3)略例3(选讲) 已知:如图,ABC中, ACB=90,BE平分ABC,CDAB及D,EHAB于H,CD交BE于F求证:四边形CEHF为菱形 略证:易证CFEH,CE=EH,在RtBCE中,CBE+CEB=90,在RtBDF中,DBF+DFB=90,因为CBE=DBF,CFE=DFB,所以CEB=CFE,所以CE=CF所以,CF=CE=EH,CFEH,所以四边形CEHF为菱形六、随堂练习1填空:(1)对角线

29、互相平分的四边形是 ;(2)对角线互相垂直平分的四边形是_;(3)对角线相等且互相平分的四边形是_;(4)两组对边分别平行,且对角线 的四边形是菱形2画一个菱形,使它的两条对角线长分别为6cm、8cm3如图,O是矩形ABCD的对角线的交点,DEAC,CEBD,DE和CE相交于E,求证:四边形OCED是菱形。七、课后练习1下列条件中,能判定四边形是菱形的是 ( )(A)两条对角线相等 (B)两条对角线互相垂直(C)两条对角线相等且互相垂直 (D)两条对角线互相垂直平分2已知:如图,M是等腰三角形ABC底边BC上的中点,DMAB,EFAB,MEAC,DGAC求证:四边形MEND是菱形3做一做:设计

30、一个由菱形组成的花边图案花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点画出花边图形 正方形一、教学目的1掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算2理解正方形及平行四边形、矩形、菱形的联系和区别,通过正方形及平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力 二、重点、难点1教学重点:正方形的定义及正方形及平行四边形、矩形、菱形的联系 2教学难点:正方形及矩形、菱形的关系及正方形性质及判定的灵活运用 三、例题的意图分析本节课安排了三个例题,例1是教材P111的例4

31、,例2及例3都是补充的题目其中例1及例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:对角线相等的菱形是正方形吗?为什么?对角线互相垂直的矩形是正方形吗?为什么?对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?能说“四条边都相等的四边形是正方形”吗?为什么?说“四个角相等的四边形是正方形”对吗?四、课堂引入1做一做:用一张长方形的纸片(如图所示)

32、折出一个正方形学生在动手做中对正方形产生感性认识,并感知正方形及矩形的关系问题:什么样的四边形是正方形?正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意: (1)有一组邻边相等的平行四边形 (菱形)(2)有一个角是直角的平行四边形 (矩形)2【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形所以,正方形具有矩形的性质,同时又具有菱形的性质五、例习题分析例1(教材P111的例4) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形已知:四边形ABCD

33、是正方形,对角线AC、BD相交于点O(如图)求证:ABO、BCO、CDO、DAO是全等的等腰直角三角形证明: 四边形ABCD是正方形, AC=BD, ACBD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)ABO、BCO、CDO、DAO都是等腰直角三角形,并且 ABO BCOCDODAO 例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F求证:OE=OF 分析:要证明OE=OF,只需证明AEODFO,由于正方形的对角线垂直平分且相等,可以得到AOE=DOF=90,AO=DO,再由同角或等角的余角相等可以得到EAO=F

34、DO,根据ASA可以得到这两个三角形全等,故结论可得六、随堂练习193 梯形(一)一、教学目标:1.探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质2.能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想二、重点、难点1重点:等腰梯形的性质及其应用2难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用三、例题的意图分析 本节课安排了三个例题,例1是教材P118中的例1它是等腰梯形性质的直接运用

35、题目比较简单,在教学中,最好让学生分析、讲解、解答同时也要注意引导学生,在证明EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(ADBC)”这一点 例2及例3都是补充的题目,例2是一道计算题,例3是一道证明题,其用意一是为了巩固其概念,二是辅助线添加方法的练习,这两个题目的辅助线均是“平移一腰”,老师们在教学或练习中也可以再补充一些其它辅助线添加方法的题目,让学生多了解多见识(但由于本教材在梯形这一部分知识中,并没有添加辅助线的要求,因此所选的题目不要太难)通过题目的练习及讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形

36、问题来解决在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助 四、课堂引入1创设问题情境引出梯形概念【观察】(教材P117中的观察)右图中,有你熟悉的图形吗?它们有什么共同的特点?2画一画:在下列所给图中的每个三角形中画一条线段,【思考】(1)怎样画才能得到一个梯形?(2)在哪些三角形中,能够得到一个等腰梯形?梯形 一组对边平行而另一组对边不平行的四边形叫做梯形(强调:梯形及平行四边形的区别和联系;上、下底的概念是由底的长短来定义的,而并不是指位置来说的)(1)一些基本概念(如图):底、腰、高(2)等腰梯形:两腰相等的梯形叫做等腰梯形(3)直角梯形:有一个角是直角的梯

37、形叫做直角梯形3做做探索等腰梯形的性质(引入用轴对称解决问题的思想)在一张方格纸上作一个等腰梯形,连接两条对角线【问题一】图中有哪些相等的线段?有哪些相等的角?这个图形是轴对称图形吗?学生画图并通过观察猜想;【问题二】这个等腰梯形的两条对角线的长度有什么关系?结论: 等腰梯形是轴对称图形,上下底的中点连线是对称轴等腰梯形同一底上的两个角相等等腰梯形的两条对角线相等五、例习题分析 例1(教材P118的例1)略(延长两腰 梯形辅助线添加方法三)六、课后练习 193 梯形(二)一、教学目标:1通过探究教学,使学生掌握“同一底上两底角相等的梯形是等腰梯形”这个判定方法,及其此判定方法的证明 2能够运用

38、等腰梯形的性质和判定方法进行有关的论证和计算,体会转化的思想,数学建模的思想,会用分析法寻求证明题思路,从而进一步培养学生的分析能力和计算能力 3通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想二、重点、难点1重点:掌握等腰梯形的判定方法并能运用2难点:等腰梯形判定方法的运用三、例题的意图分析 本节课安排的例题及练习较多,可供老师们选用 例1是教材P119的例2,这是一道计算题,讲解时要让学生注意,已知中并没有给出等腰梯形的条件,它需要先判定梯形ABCD为等腰梯形,然后再用其性质得出结论 例2、例3、例4都是补充的题目其中例2是一道文字题,这道题在

39、进行证明时,可采用“平移对角线”或“作高”两种不同的方法,通过讲解例2,可以再次给学生介绍解决梯形问题时辅助线的添加方法 例3是一道证明等腰梯形的题,它需要先证明其四边形是梯形,即先证出EGAB,此时还要由AE,BG延长交于O,说明EGAB,才能得出四边形ABGE是梯形然后再利用同底上的两角相等得出这个梯形是等腰梯形选讲此题的目的是为了让学生了解和掌握证明一个四边形是等腰梯形的步骤及方法 例4是一道作图题,新教材P119的练习4就是一道画梯形图的题,此例4及练习4相同通过此题的讲解及练习,就是要加强学生对梯形概念的理解,并了解梯形作图的一般方法让学生知道梯形的画图题,也常常是通过分析,找出需要

40、添加的辅助线,先画出三角形或四边形,再根据它们之间的联系画出所要求的梯形四、课堂引入1复习提问:(1)什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?(2)等腰梯形有哪些性质?它的性质定理是怎样证明的?(3)在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题 2【提出问题】:前面所学的特殊四边形的判定基本上是性质的逆命题等腰梯形同一底上两个角相等的逆命题是什么? 命题:同一底上的两个角相等的梯形是等腰梯形问:这个命题是否成立?能否加以证明,引导学生写出已知、求证启发:能否转化为特殊四边形或三角形,鼓励学生大胆猜想,和求证已知:如图,在梯形ABCD中,ADBC,B=C求证:AB=CD分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,命题就容易证明了五、例、习题分析例1(教材P119的例2)六、随堂练习第 17 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁