《全高中数学知识总结3.doc》由会员分享,可在线阅读,更多相关《全高中数学知识总结3.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七、反证法及前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到及已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真
2、,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论及“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。反证法的证题模式可以简要的概括我为“否定推理否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达
3、到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论 推导出矛盾 结论成立。实施的具体步骤是:第一步,反设:作出及求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。在数学解题中经常使用反证法,牛
4、顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。、再现性题组:1. 已知函数f(x)在其定义域内是减函数,则方程f(x)0 _。A.至多一个实根 B.至少一个实根 C.一个实根 D.无实根2. 已知a0,1bab ab B. ababa C. aba ab D. ab aba3. 已知l,a ,b ,若a、b为异面直线,则_。A. a、b都及l相交 B
5、. a、b中至少一条及l相交C. a、b中至多有一条及l相交 D. a、b都及l相交4. 四面体顶点和各棱的中点共10个,在其中取4个不共面的点,不同的取法有_。(97年全国理)A. 150种 B. 147种 C. 144种 D. 141种【简解】1小题:从结论入手,假设四个选择项逐一成立,导出其中三个及特例矛盾,选A;2小题:采用“特殊值法”,取a1、b0.5,选D;3小题:从逐一假设选择项成立着手分析,选B;4小题:分析清楚结论的几种情况,列式是:CC436,选D。 S C A O B、示范性题组:例1. 如图,设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点。求证:AC及平
6、面SOB不垂直。【分析】结论是“不垂直”,呈“否定性”,考虑使用反证法,即假设“垂直”后再导出矛盾后,再肯定“不垂直”。【证明】 假设AC平面SOB, 直线SO在平面SOB内, ACSO, SO底面圆O, SOAB, SO平面SAB, 平面SAB底面圆O,这显然出现矛盾,所以假设不成立。即AC及平面SOB不垂直。【注】否定性的问题常用反证法。例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾。例2. 若下列方程:x4ax4a30, x(a1)xa0, x2ax2a0至少有一个方程有实根。试求实数a的取值范围。【分析】 三个方程至少有一个方程有实根的反面情况仅有一种:三个方程均没有实
7、根。先求出反面情况时a的范围,再所得范围的补集就是正面情况的答案。【解】 设三个方程均无实根,则有:,解得,即a1。所以当a1或a时,三个方程至少有一个方程有实根。【注】“至少”、“至多”问题经常从反面考虑,有可能使情况变得简单。本题还用到了“判别式法”、“补集法”(全集R),也可以从正面直接求解,即分别求出三个方程有实根时(0)a的取值范围,再将三个范围并起来,即求集合的并集。两种解法,要求对不等式解集的交、并、补概念和运算理解透彻。例3. 给定实数a,a0且a1,设函数y (其中xR且x),证明:.经过这个函数图像上任意两个不同点的直线不平行于x轴; .这个函数的图像关于直线yx成轴对称图
8、像。(88年全国理)。【分析】“不平行”的否定是“平行”,假设“平行”后得出矛盾从而推翻假设。【证明】 设M(x,y)、M(x,y)是函数图像上任意两个不同的点,则xx,假设直线MM平行于x轴,则必有yy,即,整理得a(xx)xxxx a1, 这及已知“a1”矛盾, 因此假设不对,即直线MM不平行于x轴。 由y得axyyx1,即(ay1)xy1,所以x,即原函数y的反函数为y,图像一致。由互为反函数的两个图像关于直线yx对称可以得到,函数y的图像关于直线yx成轴对称图像。【注】对于“不平行”的否定性结论使用反证法,在假设“平行”的情况下,容易得到一些性质,经过正确无误的推理,导出及已知a1互相
9、矛盾。第问中,对称问题使用反函数对称性进行研究,方法比较巧妙,要求对反函数求法和性质运用熟练。、巩固性题组:1. 已知f(x),求证:当xx时,f(x)f(x)。2. 已知非零实数a、b、c成等差数列,ac,求证:、不可能成等差数列。3. 已知f(x)xpxq,求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于 。4. 求证:抛物线y1上不存在关于直线xy0对称的两点。5. 已知a、bR,且|a|b|1,求证:方程xaxb0的两个根的绝对值均小于1。 A F DB M NE C6. 两个互相垂直的正方形如图所示,M、N在相应对角线上,且有EMCN,求证:MN不可能垂直CF。第二章
10、 高中数学常用的数学思想一、数形结合思想方法中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实
11、世界的量的关系及空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划及空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”及“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言及直观的图像结合起来,关键是代数问题及图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻
12、底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。、再现性题组:5. 设命题甲:0x5;命题乙:|x2|3,那么甲是乙的_。 (90年全国文)A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件6. 若log2log20,则_。(92年全国理)A. 0ab1 B. 0
13、bab1 D. ba17. 如果|x|,那么函数f(x)cosxsinx的最小值是_。 (89年全国文)A. B. C. 1 D. 8. 如果奇函数f(x)在区间3,7上是增函数且最小值是5,那么f(x)的-7,-3上是_。(91年全国)A.增函数且最小值为5 B.增函数且最大值为5C.减函数且最小值为5 D.减函数且最大值为5 9. 设全集I(x,y)|x,yR,集合M(x,y)| 1,N(x,y)|yx1,那么等于_。 (90年全国)A. B. (2,3) C. (2,3) D. (x,y)|yx1 10. 如果是第二象限的角,且满足cossin,那么是_。A.第一象限角 B.第三象限角
14、C.可能第一象限角,也可能第三象限角 D.第二象限角11. 已知集合E|cossin,02,F|tg乙,选A;2小题:由已知画出对数曲线,选B;3小题:设sinxt后借助二次函数的图像求f(x)的最小值,选D;4小题:由奇函数图像关于原点对称画出图像,选B;5小题:将几个集合的几何意义用图形表示出来,选B;6小题:利用单位圆确定符号及象限;选B;7小题:利用单位圆,选A;8小题:将复数表示在复平面上,选B;9小题:转化为圆上动点及原点连线的斜率范围问题;选D;10小题:利用复平面上复数表示和两点之间的距离公式求解,答案。【注】 以上各题是历年的高考客观题,都可以借助几何直观性来处理及数有关的问
15、题,即借助数轴(题)、图像(、题)、单位圆(、题)、复平面(、题)、方程曲线(题)。 y 4 y=1-m 1 O 2 3 x、示范性题组:例1. 若方程lg(x3xm)lg(3x)在x(0,3)内有唯一解,求实数m的取值范围。【分析】将对数方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图像进行解决。【解】 原方程变形为 即:设曲线y(x2) , x(0,3)和直线y1m,图像如图所示。由图可知: 当1m0时,有唯一解,m1; 当11m4时,有唯一解,即3m0, m1或30),椭圆中心D(2,0),焦点在x轴上,长半轴为2,短半轴为1,它的左顶点为A。问p在什么范
16、围内取值,椭圆上有四个不同的点,它们中每一个点到点A的距离等于该点到直线L的距离?【分析】 由抛物线定义,可将问题转化成:p为何值时,以A为焦点、L为准线的抛物线及椭圆有四个交点,再联立方程组转化成代数问题(研究方程组解的情况)。【解】 由已知得:a2,b1, A(,0),设椭圆及双曲线方程并联立有:,消y得:x(47p)x(2p)0所以1664p48p0,即6p8p20,解得:p1。结合范围(,4+)内两根,设f(x)x(47p)x(2p),所以4+即p0、f(4+)0即p43。结合以上,所以43p。【注】 本题利用方程的曲线将曲线有交点的几何问题转化为方程有实解的代数问题。一般地,当给出方
17、程的解的情况求参数的范围时可以考虑应用了“判别式法”,其中特别要注意解的范围。另外,“定义法”、“数形结合法”、“转化思想”、“方程思想”等知识都在本题进行了综合运用。例4. 设a、b是两个实数,A(x,y)|xn,ynab (nZ),B(x,y)|xm,y3m15 (mZ),C(x,y)|xy144,讨论是否,使得AB及(a,b)C同时成立。(85年高考)【分析】集合A、B都是不连续的点集,“存在a、b,使得AB”的含意就是“存在a、b使得nab3n15(nZ)有解(AB时xnm)。再抓住主参数a、b,则此问题的几何意义是:动点(a,b)在直线L:nxy3n15上,且直线及圆xy144有公共
18、点,但原点到直线L的距离12。【解】 由AB得:nab3n15 ;设动点(a,b)在直线L:nxy3n15上,且直线及圆xy144有公共点,所以圆心到直线距离d3()12 n为整数 上式不能取等号,故a、b不存在。【注】 集合转化为点集(即曲线),而用几何方法进行研究。此题也属探索性问题用数形结合法解,其中还体现了主元思想、方程思想,并体现了对有公共点问题的恰当处理方法。本题直接运用代数方法进行解答的思路是:由AB得:nab3n15 ,即b3n15an (式);由(a,b)C得,ab144 (式);把式代入式,得关于a的不等式:(1n)a2n(3n15)a(3n15)1440 (式),它的判别
19、式4n(3n15)4(1n)(3n15)14436(n3)因为n是整数,所以n30,因而0,故式不可能有实数解。所以不存在a、b,使得AB及(a,b)C同时成立、巩固性题组:1. 已知5x12y60,则的最小值是_。A. B. C. D. 12. 已知集合P(x,y)|y、Q(x,y)|yxb,若PQ,则b的取值范围是_。A. |b|3 B. |b|3 C. 3b3 D. 3b|x1|x1|的解集是非空数集,那么实数m的取值范围是_。6. 设zcos且|z|1,那么argz的取值范围是_。7. 若方程x3ax2a0的一个根小于1,而另一根大于1,则实数a的取值范围是_。8. sin20cos8
20、0sin20cos80_。9. 解不等式: bx10. 设Ax|1x0、a0、a2时分a0、a0和a0三种情况讨论。这称为含参型。另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行
21、,获取阶段性结果;最后进行归纳小结,综合得出结论。、再现性题组:1集合Ax|x|4,xR,Bx|x3|a,xR,若AB,那么a的范围是_。A. 0a1 B. a1 C. a1 D. 0a0且a1,plog(aa1),qlog(aa1),则p、q的大小关系是_。A. pq B. pq D.当a1时,pq;当0a1时,p0、a0、a1、0a1两种情况讨论,选C;3小题:分x在第一、二、三、四象限等四种情况,答案4,-2,0;4小题:分、0、0、x0两种情况,选B;6小题:分侧面矩形长、宽分别为2和4、或4和2两种情况,选D;7小题:分截距等于零、不等于零两种情况,选C。、示范性题组:例1. 设0x
22、0且a1,比较|log(1x)|及|log(1x)|的大小。【分析】 比较对数大小,运用对数函数的单调性,而单调性及底数a有关,所以对底数a分两类情况进行讨论。【解】 0x1 01x1 当0a0,log(1x)0; 当a1时,log(1x)0,所以|log(1x)|log(1x)|log(1x) log(1x)log(1x)0;由、可知,|log(1x)|log(1x)|。【注】本题要求对对数函数ylogx的单调性的两种情况十分熟悉,即当a1时其是增函数,当0a1时其是减函数。去绝对值时要判别符号,用到了函数的单调性;最后差值的符号判断,也用到函数的单调性。例2. 已知集合A和集合B各含有12
23、个元素,AB含有4个元素,试求同时满足下面两个条件的集合C的个数: . CAB且C中含有3个元素; . CA 。【分析】 由已知并结合集合的概念,C中的元素分两类:属于A 元素;不属于A而属于B的元素。并由含A中元素的个数1、2、3,而将取法分三种。【解】 CCCCCC1084【注】本题是排列组合中“包含及排除”的基本问题,正确地解题的前提是合理科学的分类,达到分类完整及每类互斥的要求,还有一个关键是要确定C中元素如何取法。另一种解题思路是直接使用“排除法”,即CC1084。例3. 设a是由正数组成的等比数列,S是前n项和。 . 证明: 0,使得lg(Sc)成立?并证明结论。(95年全国理)【
24、分析】 要证的不等式和讨论的等式可以进行等价变形;再应用比较法而求解。其中在应用等比数列前n项和的公式时,由于公式的要求,分q1和q1两种情况。【解】 设a的公比q,则a0,q0 当q1时,Sna,从而SSSna(n2)a(n1)aa0; 当q1时,S,从而SSSaq0;由上可得SSS,所以lg(SS)lg(S),即lgS。. 要使lg(Sc)成立,则必有(Sc)(Sc)(Sc),分两种情况讨论如下:当q1时,Sna,则(Sc)(Sc)(Sc)(nac)(n2)ac(n1)aca0当q1时,S,则(Sc)(Sc)(Sc)c ccaqac(1q) aq0 ac(1q)0即c而ScS0, 使得lg
25、(Sc)成立。【注】 本例由所用公式的适用范围而导致分类讨论。该题文科考生改问题为:证明logS ,和理科第一问类似,只是所利用的是底数是0.5时,对数函数为单调递减。例1、例2、例3属于涉及到数学概念、定理、公式、运算性质、法则等是分类讨论的问题或者分类给出的,我们解决时按要求进行分类,即题型为概念、性质型。例4. 设函数f(x)ax2x2,对于满足1x0,求实数a的取值范围。 1 4 x 1 4 x【分析】 含参数的一元二次函数在有界区间上的最大值、最小值等值域问题,需要先对开口方向讨论,再对其抛物线对称轴的位置及闭区间的关系进行分类讨论,最后综合得解。【解】当a0时,f(x)a(x)2
26、或或 a1或a;当a 。【注】本题分两级讨论,先对决定开口方向的二次项系数a分a0、a0时将对称轴及闭区间的关系分三种,即在闭区间左边、右边、中间。本题的解答,关键是分析符合条件的二次函数的图像,也可以看成是“数形结合法”的运用。例5. 解不等式0 (a为常数,a)【分析】 含参数的不等式,参数a决定了2a1的符号和两根4a、6a的大小,故对参数a分四种情况a0、a0、a0、a0时,a; 4a0 。 所以分以下四种情况讨论:当a0时,(x4a)(x6a)0,解得:x6a;当a0时,x0,解得:x0;当a0,解得: x4a;当a时,(x4a)(x6a)0,解得: 6ax0时,x6a;当a0时,x
27、0;当a0时,x4a;当a时,6ax0), y2ya 解得:y1 (0a1)由上可得,z(1)或(1)【注】本题用标准解法(设zxy再代入原式得到一个方程组,再解方程组)过程十分繁难,而挖掘隐含,对z分两类讨论则简化了数学问题。【另解】 设zxy,代入得 xy22xya; 当y0时,x2|x|a,解得x(1),所以z(1);当x0时,y2|y|a,解得y(1),所以(1)。由上可得,z(1)或(1)【注】此题属于复数问题的标准解法,即设代数形式求解。其中抓住2xy0而分x0和y0两种情况进行讨论求解。实际上,每种情况中绝对值方程的求解,也渗透了分类讨论思想。例7. 在xoy平面上给定曲线y2x
28、,设点A(a,0),aR,曲线上的点到点A的距离的最小值为f(a),求f(a)的函数表达式。 (本题难度0.40)【分析】 求两点间距离的最小值问题,先用公式建立目标函数,转化为二次函数在约束条件x0下的最小值问题,而引起对参数a的取值讨论。【解】 设M(x,y)为曲线y2x上任意一点,则|MA|(xa)y(xa)2xx2(a1)xax(a1)(2a1)由于y2x限定x0,所以分以下情况讨论:当a10时,xa1取最小值,即|MA2a1;当a10时,x0取最小值,即|MAa;综上所述,有f(a) 。【注】本题解题的基本思路是先建立目标函数。求二次函数的最大值和最小值问题我们十分熟悉,但含参数a,以及还有隐含条件x0的限制,所以要从中找出正确的分类标准,从而得到df(a)的函数表达式。、巩固性题组:1. 若loglog(xa) (a0且a1)11.设首项为1,公比为q (q0)的等比数列的前n项和为S,又设T,求T 。12. 若复数z、z、z在复平面上所对应三点A、B、C组成直角三角形,且|z|2,求z 。13. 有卡片9张,将0、1、2、8这9个数字分别写在每张卡片上。现从中任取3张排成三位数,若6可以当作9用,问可组成多少个不同的三位数。14. 函数f(x)(|m|1)x2(m1)x1的图像及x轴只有一个公共点,求参数m的值及交点坐标。第 14 页