《2022年高一数学综合练习 .pdf》由会员分享,可在线阅读,更多相关《2022年高一数学综合练习 .pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一数学综合练习(二)姓名班级得分一、选择题 (本大题共 12 个小题,每小题 5 分,共 60 分)1、满足条件xtan1 的范围是 (以下Zk)A42,42kkB4,kkC4,4kkD43,4kk2、已知、都是钝角,且135cos,54sin,那么sin的值是A6516B6533C6556D6516或65563、函数xxxycoscos3cos的值域是A0,4B0,4C4,4D0,44、若32cosx,,0 x,则 x 等于A32arccosB32arccosC32arccosD32arccos5、若12,12,则函数2sin4cosy的最小值是A89B2123C0 D1 6、已知2sin
2、2sin6,则1tan1tan的值是A57B57C75D757、若 a=(1,3),b=(-2,-1),则(3a+2b)(2 a+5b)等于A95106510B55 C15 D205 8、若 a=(,2),b=(-3,5),则 a 与 b 的夹角为钝角,则 的取值范围是A310B310C310D3109、在矩形ABCD 中,15eBC,23eDC则OC等于A213521eeB213521eeC213521eeD213521ee10、根据下列条件,确定ABC 有两解的是Aa=18,b=20,A=120;Ba=60,c=48,B=60Ca=3,b=6,A=30Da=14,b=16,A=4511、已
3、知2a,1b,a 与 b 的夹角为60,又 c=ma+3b,d=2a-mb,且 cd,则 m 的值是A0 B1 或 6 C 1 或 6 D 6 或 6 12、在ABC 中,cAB,aBC,bCA,下列推导不正确的是A若 ab0,则 ABC 为锐角三角形Bab=0,则 ABC 为直角三角形Cab=bc,则ABC 为等腰三角形Dc(a+b+c)=0,则ABC 为正三角形题号1 2 3 4 5 6 7 8 9 10 11 12 答案A B C D O 名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 4 页 -二、填空题 (本大题共四个小题,每小题5 分,共 20 分)13、已知2a,1
4、b,a 与 b 的夹角为3,则向量2a+3b 与 3a-b 的夹角(可用反三角函数表示)_ 14、函数1tan32coslgxxy的定义域是 _ 15、60sin x+60sin2xx120cos3=_ 16、平面内三点A、B、C 在一条直线上,mOA,2,1,nOB,1,5OC且OAOB,(m,nN)则m+n=_ 三、解答题 (本大题共 6 个小题,共 70 分)17、已知函数xxxxy22cos3cossin2sin,Rx,那么(1)函数的最小正周期是什么?(2)函数在什么区间上是增函数?(3)函数的图象可以由函数xy2sin2,Rx的图象经过怎样的变换得到?18、已知向量a、b、c 两两
5、所成的角相等,并且2a,4b,6c,(1)求向量a+b+c 的长度;(2)向量 a+b+c 与 a、b、c 的夹角19、已知sin,x2sin,cos成等差数列,sin,xsin,cos成等比数列,求x2cos的值20、如图,某海岛上一观察哨所A上午 11 时测得以轮船在海岛北偏东60的 C处,12 时 20 分时测得船在海岛北偏西60的 B处,12 时 40 分轮船到达位于海岛正西方且距海岛5km的 E港口,如果轮船始终保持匀速直线运动,问船速是多少?A C B E 东北名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 4 页 -21、平面内有向量7,1OA,1,5OB,1,2O
6、P,点 X 为直线 OP 上一动点.(1)当XBXA取最小值时,求的OX坐标;(2)当点 X 满足(1)的条件和结论时,求cosAXB 的值22、如图,设 ABC 的外心为 O,以线段 OA,OB 为邻边作平行四边形,第四个顶点为D,再以 OC 与 OD 为邻边作平行四边形,它的第四个顶点为H,(1)若aOA,bOB,cOC,hOH,用 a、b、c 表示 h;(2)证明AH BC;(3)设ABC 的中,A=60,B=45,外接圆半径为R,用 R 表示 h高一数学综合练习(二)(答案)一选择题题号1 2 3 4 5 6 7 8 9 10 11 12 答案C A D C C D C A A D B
7、 D 二、填空题13、1147114728arccos;14、Zkkxkkxkx,1254412或;15、0;16、9;17、解:函数xxxxy22cos3cossin2sin=242sin2x,函数的最小正周期是,Zkkk,8,8518、分两种情况:当向量a、b、c 两两所成的角为0时,12cba,a+b+c 与 a、b、c 的夹角为0;当向量 a、b、c两两所成的角为120时,C A B D H O 名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 4 页 -22cbacba=bcacabcba222222=2222120cos2120cos2120cos2cbcabacba=
8、12,32cbacbaacbaa1cos=23,1501,同理cbabcbab2cos=0,902,303,19、解:由条件得2x2sin=sin+cosx2sin=sincos故cossin212sin42x=1+2x2sin22cos2sin212cos1422xxx,022cos2cos42xx解得83312cos x,由于2sin1sin212cos2xx,所以12sinsin02x,故,12sin10,12cos0 x,83312cos x20、解轮船从 C处到点 B耗时 80 分钟,从点 B处到点 E耗 20 分钟,轮船保持匀速直线运动 BC=4EB,设BE x,BC=4x,由已知
9、得只要求出的值即可在 AEC中sinC=2x15x5sin150ECEACAEsin在 ABC 中AB=sin120BCsinC=34sin1204x2x1在 ABE 中,由 余 弦 定 理AEcos302AB-AEABBE222=3312333431652-25,BE=331轮船船速是396020331(km/t)21、解:(1)设OX=(x,y),点 X 为直线 OP 上,OX与OP共线,又1,2OP x 1 y 2=0 即x=2y,OX=(2y,y),又OXOAXA,7,1OA,yyXA7,21,同 理OXOBXB=yy 1,25,于是XBXA=yyyy1272521=8252y,当 y
10、=2,时,XBXA有最小值-8,此时OX=(4,2);(2)当OX=(4,2),即 y=2,时,有5,3XA,1,1XB34XA,2XB,XBXA=8,cosAXB=177422、(1)由向量加法的平行四边形法则,得baOBOAOD,ODOCOH=a+b+c,h=a+b+c;(2)bcOAOHAH,bcbcBCAH=2222bcbc,O 为ABC 的外心,cba即0BCAH,AHBC,AH BC;(3)在 ABC 的中,A=60,B=45 ,则 BOC=2 A=120 ,AOC=2 B=90 ,AOB=150,外 接 圆 半 径 为R,cbacbahhh2=bcacabcba222222=2222120cos290cos2150cos2cbcabacba=2R+2R+2R32R+02R=232R,Rh32=R226名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 4 页 -