2022年大学概率论与数理统计必过复习资料及试题解析 .pdf

上传人:C****o 文档编号:40217554 上传时间:2022-09-08 格式:PDF 页数:29 大小:641.13KB
返回 下载 相关 举报
2022年大学概率论与数理统计必过复习资料及试题解析 .pdf_第1页
第1页 / 共29页
2022年大学概率论与数理统计必过复习资料及试题解析 .pdf_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2022年大学概率论与数理统计必过复习资料及试题解析 .pdf》由会员分享,可在线阅读,更多相关《2022年大学概率论与数理统计必过复习资料及试题解析 .pdf(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、概率论与数理统计复习提要第一章随机事件与概率1事件的关系 2运算规则(1)(2)(3)(4)3概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5)(6),若,则,(7)(8)4 古典概型:基本事件有限且等可能5几何概率 6 条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,则有(3)全概率公式:(4)Bayes 公式:7事件的独立性:独立(注意独立性的应用)第二章随机变量与概率分布 1 离散随机变量:取有限或可列个值,满足(1),(2)(3)对任意,2 连续随机变量:具有概率密度函数,满足(1)(2);(3)对任意,4 分布函数,具有以下性质(1);(

2、2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,;(6)为连续函数,且在连续点上,5 正态分布的概率计算以记标准正态分布的分布函数,则有(1);(2);(3)若,则;(4)以记标准正态分布的上侧分位数,则 6 随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导数,若不单调,先求分布函数,再求导。第三章 随机向量1 二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3),2 二维连续随机向量,联合密度,边缘密度,有(1);(2)(4)(3);,3 二维均匀分布,其中为的面积 4 二维正态分布且;5 二维随机向量的分布函

3、数有(1)关于单调非降;(2)关于右连续;(3);(4),;(5);(6)对二维连续随机向量,6随机变量的独立性独立(1)离散时独立(2)连续时独立(3)二维正态分布独立,且7随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1 期望 (1)离散时 (2)连续时,;,;(3)二维时,(4);(5);(6);(7)独立时,2 方差(1)方差,标准差(2);(3);(4)独立时,3 协方差(1);(2)(3);(4)时,称不相关,独立不相关,反之不成立,但正态时等价;(5)4相关系数;有,5 阶原点矩,阶中心矩第五章大数定律与中心极限定理 1Chebyshev 不等

4、式 2 大数定律3中心极限定理(1)设随机变量独立同分布,或,或名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 29 页 -或,(2)设是次独立重复试验中发生的次数,则对任意,或理解为若,则第六章 样本及抽样分布 1 总体、样本(1)简单随机样本:即独立同分布于总体的分布(注意样本分布的求法);(2)样本数字特征:样本均值(,);样本方差)样本标准样本阶原点矩,样本阶中心矩 2统计量:样本的函数且不包含任何未知数 3三个常用分布(注意它们的密度函数形状及分位点定义)(1)分布,其中标准正态分布,若且独立,则;(2)分布,其中且独立;(3)分布,其中性质 4正态总体的抽样分布(1)

5、;(2 ;(3 且与独立;(4);,(5)(6)第七章参数估计 1 矩估计:(1)根据参数个数求总体的矩;(2)令总体的矩等于样本的矩;(3)解方程求出矩估计 2 极大似然估计:(1)写出极大似然函数;(2)求对数极大似然函数(3)求导数或偏导数;(4)令导数或偏导数为0,解出极大似然估计(如无解回到(1)直接求最大值,一般为min 或 max)3 估计量的评选原则,则为无偏;(2)有效性:两个无偏估计中方差小的有效;(1)无偏性:若概率论与数理统计期末试题(2)与解答一、填空题(每小题 3 分,共 15 分)1 设事件仅发生一个的概率为0.3,且,则生的概率为 2 设随机变量服从泊松分布,且

6、,则_.3 设随机变量在区间上服从均匀分布,则随机变量在区间密度为4 设随机变量相互独立,且均服从参数为的指数分布,_,5 设总体的概率密度为是来自的样本,则未知参数的极大似然估计量为解:1即所以 .2由知即解得,故 .3设的分布函数为的分布函数为,密度为则因为,所以,即故另解在上函数严格单调,反函数为所以4,故 .5似然函数为解似然方程得的极大似然估计为二、单项选择题(每小题3 分,共 15 分)1设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立.(B)若,则(C)若,则与也独立.与也独立(D)若,则与也独立.()2 设随机变量的分布函数为,则的值为(A).(B)(C).

7、(D).()3设随机变量和不相关,则下列结论中正确的是(A)与独立.(B)(C).(D).()4 设离散型随机变量和的联合概率分布为若独立,则的值为名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 29 页 -(A).(A).()(C)(D)5设总体的数学期望为为来自的样本,则下列结论中正确的是(A)X1是的无偏估计量.(B)X1是的极大似然估计量.(C)X1是的相合(一致)估计量.(D)X1不是的估计量.()解:1因为概率为1 的事件和概率为0 的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D)事实上由图可见 A与 C不独立2所以 3由不相关的等价条件知应选

8、(B).4若独立则有应选(A).2 ,9 故应选(A)5,所以 X1是的无偏估计,应选(A).三、(7 分)已知一批产品中90%0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设任取一产品,经检验认为是合格品 任取一产品确是合格品则(1)(2).四、(12 分)从学校乘汽车到火车站的途中有3 件是相互独立的,并且概率都是 2/5.设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差.解:的概率分布为即的分布函数为五、(10 分)设二维随机变量在区域匀分布.求(1)关于的边缘概率

9、密度;(2)的分布函数与概率密(1)的概率密度为(2)利用公式其中当 或时时故的概率密度为的分布函数为或利用分布函数法六、(10 分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标互独立,且均服从分布.求(1)命中环形区域的概率;(2)命中点到目标中心距离1);(2).七、(11 分)设某机器生产的零件长度(单位:cm),今抽取容量为16 样本,测得样本均值,样本方差.(1)求的置信度为0.95 区间;(2)检验假设(显著性水平为0.05).(附注)解:(1)的置信度为下的置信区间为所以的置信度为0.95 的置信区间为(9.7868,10.2132)(2)的拒绝域为,因为,所以接

10、受概率论与数理统计期末试题(3)与解答一、填空题(每小题名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 29 页 -3 分,共 15 分)(1)设事件与相互独立,事件与互不相容,事件与互不相容,则事件、中仅发生或仅概率为(2)甲盒中有 2 个白球和 3 个黑球,乙盒中有3 个白球和 2 个黑球,今从每个盒中各取个球,发现它们是同一颜色的,则这颜色是黑色的概率为(3)设随机变量的概率密度为现对察,用表示观察值不大于0.5 的次数,则 _.(4)设二维离散型随机变量的分布列为若,则(5)设是总体的样本,是样本方差,若,(注:,)解:(1)因为与不相容,与不相容,所以,故同理 .(2)

11、设四个球是同一颜色的,四个球都是白球,四个球都是黑球 则 .所求概率为所以(3)其中,(4)的分布为这是因为,由得,故(5)即,亦即 .二、单项选择题(每小题3 分,共 15分)(1)设、为三个事件,且,则有(A)(B)(C)(D)(2)设随机变量的概率密度为且,则在下列各组数中应取(A)(B)(C).(D)(3)设随机变量与相互独立,其概率分布分别为则有()(A)(B)(C)(D)()(4)对任意随机变量,若存在,则等于(A)(B)(C)(D)()(5)设为正态总体的一个样本,表示样本均值,则的置信度为的置信区间为(B)(C)()(D)解(1)由知,故(A)应选 C.(2)即时故当应选(3)

12、应选(4)应选(5)因为方差已知,所以的置信区间为应选 D.三、(8 分)装有 10 件某产品(其中一等品5 件,二等品 3件,三等品 2 件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取 2 件产品,结果都是一等品,求丢失的也是一等品的概率。解:设从箱中任取2 件都是一等品 丢失等号 .则;所求概率为四、(10 分)设随机变量的概率密度为求(1)常数;(2)的分布函数;(3)解:(1)(2)的分布函数为(3)五、(12 分)设的概率密度为求(1)边缘概率密度;(2);(3)的概率密度(2)名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 29 页 -(3)时时六、(10 分

13、)(1)设,且与独立,求;(2)设且与独立,求.;(2)因相互独立,所以七、(10 分)设总体的概率密度为试用来自总体的样本,求未知参数的矩估计和极大似然估计解:先求矩估计故的矩估计为再求极大似然估计所以的极大似然估计为概率论与数理统计期末试题(4)与解答一、填空题(每小题3 分,共 15 分)(1)设,,则至少发生一个的概率为(2)设服从泊松分布,若,则(3)设随机变量的概率密度函数为今对进行 8 独立观测,以表示观测值大于1 的观测次数,则(4)的指数分布,由5 个这种元件串联而组成的系统,能够正常工作 100 小时以上的概率为(5)设测量零件的长度产生的误差服从正态分布,今随机地测量16

14、 ,.在置信度 0.95 下,的置信区间为得(2)故 .解:(1)(3),其中 .(4)设第件元件的寿命为,则求概率为(5)的置信度下的置信区间为 .系统的寿命为,所以的置信区间为().二、单项选择题(下列各题中每题只有一个答案是对的,请将其代号填入()中,每小题 3 分,共 15 分)(1)是任意事件,在下列各式中,不成立的是(A)(B)(C).(D).()(2)设是随机变量,其分布函数分别为,为使是某一随机变量的分布函数,在下列给定的各组数值中应取 .(B).(C).(D).()(3)设随机变量的分布函数为,则的分布函数为(A)(A).(B).(D).()(4)设随机变量的概率分布为.且满

15、足,则的相关系数为(C).(C).(D).()相互独立,根据切比(5)设随机变量雪夫不等式有(A)0.(B .(C).(D).()解:(1)(A):成立,(B):应选(B)(A).(B)(2).应选(C)(3)应选(D)(4)的分布为,所以,于是 .应选(A)(5)由切比雪夫不等式名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 29 页 -应选(D)三、(8 分)在一天中进入某超市的顾客人数服从参数为的泊松分布,而进入超市的每一个人购买种商品的概率为,若顾客购买商品是相互独立的,求一天中恰有个顾客购买种商品的概率。解:设一天中恰有个顾客购买种商品 一天中有个顾客进入超市 则四、(

16、10 分)设考生的外语成绩(百分制)服从正态分布,平均成绩(即参数之值)为 72 分,96 以上的人占考生总数的2.3%,今任取 100 个考生 的成绩,以表示成绩在60 分至 84 分之间的人数,求(1)的分布列.(2)和.解:(1),其中由得所以故的分布列为(2),.五、(10 分)设在由直线及曲线y 上服从均匀分布,(1)求边缘密度和,并说明与是否独立.(2)求.解:区域 D的面积的概率密度为所围成的区域(1)(2)因,所以不独立.(3).六、(8分)二维随机变量在以为顶点的三角形区域上服从均匀分布,求的概率密度。设的概率密度为,则当 或时当 时所以的密度为解 2:分布函数法,设的分布函

17、数为,则故的密度为七、(9分)已知分子运动的速度具有概率密度为的简单随机样本(1)求未知参数的矩估计和极大似然估计;(2)验证所求得的矩估计是否为的无偏估计。解:(1)先求矩估计再求极大似然估计得的极大似然估计(2)对矩估计是的无偏估计所以矩估计八、(5 分)一工人负责台同样机床的维修,这台机床自左到右排在一条直线上,相邻两台机床的距离为(米)。假设每台机床发生故障的概率均为,且相互独立,若表示工人修完一台后到另一台需要检修的机床所走的路程,求解:设从左到右的顺序将机床编号为为已经修完的机器编号,表示将要去修的机床号码,则于是概率论与数理统计试题(5)一、判断题(每小题3 分,本题共 15 分

18、。正确打“”,错误打“”)设 A、B是 中的随机事件,必有 P(A-B)=P(A)-P(B)()设 A、B是 中的随机事件,则 AB=A AB B ()若X服从二项分布b(k;n,p),则 EX=p (样本均值=是母体均值 EX的一致估计()X N(,),YN(,),则 XYN(0,)名师资料总结-精品资料欢迎下载-名师精心整理-第 6 页,共 29 页 -()二、计算(10 分)(1)教室里有个学生,求他们的生日都不相同的概率;(2)房间里有四个人,求至少两个人的生日在同一个月的概率三、(10 分)设,证明、互不相容与、立四、(15 分)某地抽样结果表明,考生的外语成绩绩(即参数之值)为 7

19、2 分,96 分以上的占考生总数的2.3%,试求考生的外语成绩在60 分至84 分之间的概率。分布表如下 x 0 1 1.5 2 2.5 (x)0.5 0.841 0.933 0.977 0.994 0.999 五、(15 分)设的概率密度为问是否独立?六、(20 分)设随机变量服从几何分布,其分布列为,求与七、(15分)设总体服从指数分布试利用样本,求参数的极大似然估计八概率论与数理统计试题(5)评分标准一;。二解(1)设他们的生日都不相同,则 -5分(2)设至少有两个人的生日在同一个月,则;或 -10分三 证若、互不相容,则,于是所以、不相互独立.-5分若、相互独立,则,于是,即、不是互不

20、相容的.-5分四解 -3分 -7分所求概率为分 =2(1)-1=20.841-1=0.682-15分五解边际密度为-5分 -10分因为独立.-15分,所以六解 1 -8 分其中由函数的幂级数展开有所以,因为所以-12分-16分 -20分七解-8分由极大似然估计的定义,的极大似然估计为-15 分概率论与数理统计试题(6)一、判断题(本题共15 分,每小题3 分。正确打“”,错误打“”)设 A、B是 中的随机事件,则A ()对任意事件A与 B,则有 P(AB)=P(A)+P(B)()若 X服从二项分布b(k;n,p),则 EX=npq 名师资料总结-精品资料欢迎下载-名师精心整理-第 7 页,共

21、29 页 -(X N(,2 ),X1,X 2,,Xn 是 X的样本,则 N(,2 )()X 为随机变量,则DX=Cov(X,X)-()二、(10 分)一袋中装有枚正品硬币,枚次品硬币(次品硬币的两面均印有国徽)从袋中任取一枚,已知将它投掷次,每次都得到国徽,问这枚硬币是正品的概率是多少?.三、(15 分)在平面上画出等距离的针,求针与任一平行线相交的概率四、(15 分)从学校到火车站的途中有3 相互独立的,并且概率都是分布函数和数学期望.五、(15 分)设二维随机变量(,)在圆域x2+y2a2 上服从均匀分布,(1)求和的相关系数;(2)问是否独立?六、(10 分)若随机变量序列,设为途中遇到

22、红灯的次数,求随机变量的分布律、满足条件试证明服从大数定律七、(10 分)设是来自总体的一个样本,是个估计量,若且试证是的相合(一致)估计量。八、(10分)某种零件的尺寸标准差为=5.2,对一批这类零件检查9 件得平均尺寸数据(毫米):=26.56,设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是26 毫米().正态分布表如下 x 0 1.56 1.96 2.33 (x)0.5 0.941 0.975 0.99 0.999 概率论与数理统计试题(6)评分标准一 ;。二解设任取一枚硬币掷次得个国徽,任取一枚硬币是正品,则 所求概率为,-5分 .-10分三 解设针与某平行线相交,针落在平面上

23、的情况不外乎图中的几种,设为针的中点到最近的一条平行线的距离。为针与平行线的夹角,则,不等式确定了平面上的一个区域.-6分发生,不等式确定的子域-10分故-15分四解即,分布律为 -5分的分布函数为 -有所不同-10分 -15分五解的密度为 -3分(1)(2)关于的边缘密度为故的相关系数.-9分关于的边缘密度的因为,所以不独名师资料总结-精品资料欢迎下载-名师精心整理-第 8 页,共 29 页 -立.-15分六证:由契贝晓夫不等式,对任意的有所以对任意的-5分故服从大数定律。-10分七证由契贝晓夫不等式,对任意的有 -5分于是即依概率收敛于,故是的相合估计。-10分八解问题是在已知的条件下检验

24、假设:=26 查正态分布表,1 =1.96-5分 1u1=1.08应当接受,即这批零件的平均尺寸应认为是 26 毫米。-15分数理统计练习一、填空题 1、设 A、B为随机事件,且(A)=0.5,(B)=0.6,则(A+B)=_ _ 2 ,则此射手的命中率。3、设随机变量服从 0,2 上均匀分布,则。4、设随机变量服从参数为的泊松()分布,且已知1,则_。5、一次试验的成功率为,进行 100 次独立重复试验,当_时为。6、(,)服从二维正态分布,则的边缘分布为。7、已知随机向量(,()=。8、随机变量的数学期望,方差,、为常数,则有=;=。9、若随机变量 (2,4),(3,9),且与相互独立。设

25、2 5,则。的两个估计量,若,则称比有效。10、1、设、为随机事件,且()=0.4,()=0.3,()=0.6,则()=_ _ 。2、设,且 1=,则 1=。3、设随机变量服从参数为2 的泊松分布,且 =3-2 则()=。4、设随机变量服从 0,2上的均匀分布,=2+1,则()=。5、设随机变量的概率密度是:,且,则=。6、利用正态分布的结论,有。数理统计练习一、填空题 1、设 A、B为随机事件,且(A)=0.5,(B)=0.6,)=0.8,则(A+B)=_ 0.7 _。2 ,则此射手的命中率。3、设随机变量服从 0,2 上均匀分布,则 1/3 。4、设随机变量服从参数为的泊松()分布,且已知

26、1,则_1_。5、一次试验的成功率为,进行100 次独立重复试验,当1/2_ 时大值为25。6、(,)服从二维正态分布,则的边缘分布为。7、已知随机向量(,()=。8、随机变量的数学期望,方差,、为常数,则 =。9、若随机变量 (2,4),(3,9),且与相互独立。设25,则 N(-2,25)。的两个无偏估计量,若,则称比有效。10、1、设、为随机事件,且()=0.4,()=0.3,()=0.6,则()=_0.3_。2、设,且 1=,则 1=。3、设随机变量服从参数为2 的泊松分布,且 =3-2 则()=4。4、设随机变量服从 0,2 上的均匀分布,=2+1,则()=4/3 。5、设随机变量的

27、概率密度名师资料总结-精品资料欢迎下载-名师精心整理-第 9 页,共 29 页 -是:,且,则=0.6 。6、利用正态分布的结论,有 1 。7、若随机变量 (1,4),(2,9),且与相互独立。设3,则。1、设 A,B为随机事件,且(A)=0.7,(AB)=0.3,则。2、四个人独立地破译一份密码,已知各人能译出的概率分别为,则密码能被译出的概率是。3、射手独立射击8 次,每次中靶的概率是0.6,那么恰好中靶3 次的概率是。4、已知随机变量服从0,2上的均匀分布,则 ()=。5、设随机变量X服从参数为的泊松分布,且,则=。6、设随机变量 (1,4),已知(0.5)=0.6915,(1.5)=0

28、.9332,则。7、随机变量的概率密度函数,则()=。8、已知总体 (0,1),设 1,2,,,是来自总体 2 。1、设 A,B为随机事件,且(A)=0.6,(AB)=(),则()=0.4 。2、设随机变量与,则(=)=_ 。3、设随机变量服从以,为参数的二项分布,且=15,=10,则=。4、设随机变量,则=。5、设随机变量的数学期望和方差 0 都存在,令,则 Y=。6、设随机变量服从区间 0,5 上的均匀分布,服从的指数分布,且,相互独立,则(,)的 联合密度函数。7、随机变量与相互独立,且()=4,()=2,则(3 2)。9 是。7、若随机变量 (1,4),(2,9),且与相互独立。设3,

29、则。1、设 A,B为随机事件,且(A)=0.7,(AB)=0.3,则 0.6 。,则目标能被击中的概率 2、四个人独立地破译一份密码,已知各人能译出的概率分别为,则密码能被译出的概率是 11/24。3、射手独立射击8 次,每次中靶的概率是0.6,那么恰好中靶3 次的概率是。4、已知随机变量服从 0,2上的均匀分布,则()=1/3 。5、设随机变量X服从参数为的泊松分布,且,则=6 。6、设随机变量 (1,4),已知(0.5)=0.6915,(1.5)=0.9332,则 0.6247 。7、随机变量的概率密度函数,则()=1 。8、已知总体 (0,1),设 1,2,,,是来自总体。1、设 A,B

30、为随机事件,且(A)=0.6,(AB)=(),则()=0.4 。2、设随机变量与,则(=)=_ 0.5_。3、设随机变量服从以,为参数的二项分布,且=15,=10,则=45 。4、设随机变量,则=2 。5、设随机变量的数学期望和方差0 都存在,令,则 Y=1 。6、设随机变量服从区间0,5 上的均匀分布,服从的指数分布,且,相互独立,则(,)合密度函数 (,)=。7、随机变量与相互独立,且()=4,()=2,则(3 2)44。9、三个人独立地向某一目标进行射击,已知各人能击中的概率分别为 1、设 A,B 为两个随机事件,且 P(A)=0.7,P(A-B)=0.3,则_ ,则目标能被击中的概率名

31、师资料总结-精品资料欢迎下载-名师精心整理-第 10 页,共 29 页 -是 3/5。2、设随机变量 的分布律为。,且与独立同分布,则随机变量max,3、设随机变量(2,),且2 40.3,则 0。4、设随机变量服从泊松分布,则=。5、已知随机变量的概率密度为,令,则的概率密度为。6、设是 10 次独立重复试验成功的次数,若每次试验成功的概率为 0.4,则。7、1,2,,,是取自总体。9、称统计量的估计量,如果=。10、概率很小的事件在一次试验中几乎是不可能发生的,这个原理称为。1、设 A、B为两个随机事件,若(A)=0.4,(B)=0.3,则。2、设是 10 次独立重复试验成功的次数,若每次

32、试验成功的概率为0.4,则。3、设随机变量 (1/4,9),以表示对的 5 次独立重复观察中“”出现的次数,则=。4、已知随机变量服从参数为的泊松分布,且P(=2)=P(=4),则=。5、称统计量的无偏估计量,如果=。6、设,且,。7、若随机变量 (3,9),(1,5),且与相互独立。设22,则。8、已知随机向量(,)的联合概率密度,则 E=1/3 。9、已知总体是来自总体的样本,要检验。1、设 A,B为两个随机事件,且P(A)=0.7,P(A-B)=0.3,则_0.6 2、设随机变量,且与独立同分布,则随机变量max,的分布律为3、设随机变量(2,),且2 40.3,则 0 4、设随机变量

33、服从泊松分布,则=。5、已知随机变量的概率密度为,令,则的概率密度。6、设是 10 次独立重复试验成功的次数,若每次试验成功的概率为0.4,则 2.4 。7、1,2,,,是取自总体。8、已知随机向量(,)的联合概率密度,则E=2/3 。9、称统计量的无偏 估计量,如果=。10、概率很小的事件在一次试验中几乎是不可能发生的,这个原理称为小概率事件原理。1、设 A、B为两个随机事件,若(A)=0.4,(B)=0.3,则 0.3 。2、设是 10 次独立重复试验成功的次数,若每次试验成功的概率为0.4,则。3、设随机变量 (1/4,9),以表示对的 5 次独立重复观察中“”出现的次数,则 5/16。

34、4、已知随机变量服从参数为的泊松分布,且P(=2)=P(=4),则=。5、称统计量的无偏估计量,如果=。6、设,且,t(n)。7、若随机变量 (3,9),(1,5),且与相互独立。设 22,则 N(7,29)。8、已知随机向量(,)的联合概率密度,则 E=1/3 。9、已知总体是来自总体的样本,要检验。1、设 A、B为两个随机事件,(A)=0.4,(B)=0.5,则。2、设随机变量 (5,0.1),则(1 2)。3 ,则每次射击击中目标的概率为。4、设随机变量的概率分布为,则的期望E=。6、设(,)的联合概率分布列为名师资料总结-精品资料欢迎下载-名师精心整理-第 11 页,共 29 页 -若

35、、相互独立,则=,=。7、设随机变量服从 1,5 上的均匀分布,则。9、若是来自总体的样本,分别为样本均值和样本方差 t(n-1)。的两个无偏估计量,若,则称比 10、1、已知(A)=0.8,(AB)=0.5,且 A与 B独立,则 (B)。2、设随机变量(1,4),且,则。3、随机变量与相互独立且同分布,则5、设随机变量 (1,4),则。(已知,)6、若随机变量 (0,4),(1,5),且与相互独立。设 3,则。1、设 A、B为两个随机事件,(A)=0.4,(B)=0.5,则 0.55 。2、设随机变量 (5,0.1),则(1 2)1.8 。3 ,则每次射击击中目标的概率为1/4 。4、设随机

36、变量的概率分布为,则的期望E=2.3。6、设(,)的联合概率分布列为若、相互独立,则=1/6,=1/9 。7、设随机变量服从 1,5 上的均匀分布,则 1/2 。9、若是来自总体的样本,分别为样本均值和样本方差 t(n-1)。的两个无偏估计量,若,则称比。10、1、已知(A)=0.8,(AB)=0.5,且 A与 B独立,则(B)3/8 。2、设随机变量(1,4),且,则 1 。3、随机变量与相互独立且同分布,则。5、设随机变量 (1,4),则0.3753 。(已知,)6、若随机变量(0,4),(1,5),且与相互独立。设3,则 N(4,9)。9、袋中有大小相同的红球4 只,黑球 3 只,从中随

37、机一次抽取2 只,则此两球颜色不同的概率为。1 设 A、B为两个随机事件,(A)=0.8,(AB)=0.4,则(AB)=0.4 。2、设是 10 次独立重复试验成功的次数,若每次试验成功的概率为0.4,则。3、设随机变量的概率分布为则 4、设随机变量的概率密度函数,则=。5、袋中有大小相同的黑球7 只,白球 3 为,则 10。6、某人投篮,每次命中率为0.7,现独立投篮5 次,恰好命中4 次的概率是。7、设随机变量的密度函数,且,则=。9、设,且,10、概率很小的事件在一次试验中几乎是不可能发生的,这个原理称为小概率事件原理。9、袋中有大小相同的红球4只,黑球 3 只,从中随机一次抽取2 只,

38、则此两球颜色不同的概率为4/7 。1 设 A、B为两个随机事件,(A)=0.8,(AB)=0.4,则(AB)=0.4 。2、设是 10 次独立重复试验成功的次数,若每次试验成功的概率为 0.4,则 2.4。3、设随机变量的概率分布为则=0.7 。4、设随机变量的概率密度函数,则。5、袋中有大小相同的黑球7 只,白球 3 为,则 10 0.39*0.7 。名师资料总结-精品资料欢迎下载-名师精心整理-第 12 页,共 29 页 -6、某人投篮,每次命中率为0.7,现独立投篮5 次,恰好命中4 次的概率是。7、设随机变量的密度函数,且,则=-2 。9、设,且,10、概率很小的事件在一次试验中几乎是

39、不可能发生的,这个原理称为小概率事件原理。1、随机事件 A与 B独立,。4、设表示 10 次独立重复射击命中目标的次数,且每次命中率为0.4,则=_。5、随机变量,则。6、四名射手独立地向一目标进行射击,已知各人能击中目标的概率分别为1/2、3/4、2/3、3/5 击中的概率是。7、一袋中有 2 个黑球和若干个白球,现有放回地摸球4 的个数是。,则袋中白球1、随机事件 A与 B独立,0.4 。4、设表示 10 次独立重复射击命中目标的次数,且每次命中率为0.4,则。5、随机变量,则 N(0,1)。6、四名射手独立地向一目标进行射击,已知各人能击中目标的概率分别为1/2、3/4、2/3、3/5

40、击中的概率是 59/60 。7、一袋中有 2 个黑球和若干个白球,现有放回地摸球4 的个数是 4 。,则袋中白球二、选择题 1、设随机事件与互不相容,且,则(D )。.B.2、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为(A )。A.B.C.D.、设,为随机事件,则必有(A )。A.B.C.D.、某人连续向一目标射击,每次命中目标的概率为,他连续射击直到命中为止,则射击次数为3 是(C )。A.B.C.D.3、设是来自总体的一个简单随机样本,则最有效的无偏估计是(A )。A.B.C.D.、已知 A、B、C为三个随机事件,则A、B、C 不都发生的事件为(A)。A.B.C.+D.、

41、下列各函数中是随机变量分布函数的为(B )。B.A.C.D.3、是二维随机向量,与不等价的是(D )A.B.C.D.和相互独立1、若随机事件与相互独立,则(B )。A.B.C.D.2、设总体的数学期望E,方差 D,1,2,3,4 是来自总体的简单随机样本,则下列计量中最有效的是(D )4、设离散型随机变量的概率分布为,则(B )。A.1.8 B.2 C.2.2 D.2.4 1、若 A与 B对立事件,则下列错误的为(A )。A.B.C.D.2、下列事件运算关系正确的是(A )。A.B.C.D.4、若,则(D )。A.和相互独立与不相关 C.5、若随机向量()服从二维正态分布,则一定相互独立;若,

42、则独立;和都服从一维正态分布;若相互独立,则 Cov(,)=0。几种说法中正确的是(B )。A.B.C.D.1、设随机事件A、B互不相容,则名师资料总结-精品资料欢迎下载-名师精心整理-第 13 页,共 29 页 -(C )。A.B.C.D.2、设,是两个随机事件,则下列等式中(C )是不正确的。A.,其中,相互独立B.,其中 C.,其中,互不相容 D.,其中 5、设是一组样本观测值,则其标准差是(B )。B.C.D.1、若 A、B相互独立,则下列式子成立的为(A )。A.B.C.D.)。2、若随机事件的概率分别为,则与一定(D A.相互对立 B.相互独立 C.互不相容 D.相容 1、对任意两

43、个事件和,若,则(D )。A.B.C.D.2、设、为两个随机事件,且,则必有(B )。A.B.C.D.互不相容 4、已知随机变量和相互独立,且它们分别在区间 1,3 和2,4 上服从均匀分布,则(A )。A.3 B.6 5、设随机变量(,9),(,25),记,则(B )。A.12 D.1与 2 的关系无法确定 1、设两个随机事件相互独立,当同时发生时,必有发生,则(A )。A.B.C.D.3、两个独立随机变量,则下列不成立的是(C )。A.B.C.D.1、若事件两两独立,则下列结论成立的是(B )。A.相互独立 B.两两独立 D.相互独立 C.2、连续型随机变量的密度函数()必满足条件(C )

44、。4、设随机变量,相互独立,且均服从0,1 上的均匀分布,则服从均匀分布的是(B )。A.B.(,)C.D.+三(1)、已知 5%的男性和 0.25%盲者的概率。设 A:表示此人是男性;B:表示此人是色盲。则所求的概率为答:此人恰好是色盲的概率为0.02625。三(2)、已知 5%的男性和 0.25%盲,问此人是男性的概率。设A:表示此人是男性;B:表示此人是色盲。则所求的概率为答:此人是男人的概率为0.4878。三(3)、一袋中装有10个球,其中 3 个白球,7 二次取得白球的概率。解 设表示表示第次取得白球,=1,2。则所求事件的概率为答:第二次取得白球的概率为3/10。三(4)、一袋中装

45、有10 个球,其中 3 个白球,7 二次取得白球,则第一次也是白球的概率。解 设表示表示第次取得白球,=1,2。则所求事件的概率为答:第二次摸得白球,第一次取得也是白球的概率为2/9。三(5)、相等,且第一、第二、第三厂家的次品率依次为2,2,4。若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率为多少?解 设表示产品由第家厂家提供,=1,2,3;B表示此产品为次品。则所求事件的概率为答:该件商品是第一产家生产的概率为0.4。三(6)、甲、乙、丙三车间加工同一产品,加工量分别占总量的25%、35%、40%,次品率分别为0.03、0.02 名师资料总结-精品资料欢迎下载-名师精心整

46、理-第 14 页,共 29 页 -0.01。现从所有的产品中抽取一个产品,试求(1)该产品是次品的概率;(2)若检查结果显示该产品是次品,则该产品是乙车间生产的概率是多少?解:设,表示甲乙丙三车间加工的产品,B表示此产品是次品。(1)所求事件的概率为(2)答:这件产品是次品的概率为 0.0185,若此件产品是次品,则该产品是乙车间生产的概率为0.38。三(7)、一个机床有1/3 的时间加工零件A,其余时间加工零件B。加工零件 A时停机的概率是0.3 件 A时停机的概率是0.4。求(1)该机床停机的概率;(2)若该机床已停机,求它是在加工零件A时发生停机的概率。解:设,表示机床在加工零件A或 B

47、,D表示机床停机。(1)机床停机夫的概率为(2)机床停机时正加工零件A的概率为三(8)、甲、乙、丙三台机床加工一批同一种零件,各机床加工的零件数量之比为 5:3:2 零件合格率依次为94,90,95。现从加工好的整批零件中随机抽查一个,发现是废品,判断它是由甲机床加工的概率。解 设,表示由甲乙丙三机床加工,B表示此产品为废品。(2 分)则所求事件的概率为答:此废品是甲机床加工概率为 3/7。三(9)、某人外出可以乘坐飞机、火车、轮船、汽车四种交通工具,其概率分别为5、15、30、50 乘坐这几种交通工具能如期到达的概率依次为100、70、60、90。已知该人误期到达,求他是乘坐火车的概率。(1

48、0 分)解:设,分别表示乘坐飞机、火车、轮船、汽车四种交通工具,B表示误期到达。则答:此人乘坐火车的概率为0.209。三(10)、某人外出可以乘坐飞机、火车、轮船、汽车四种交通工具,其概率分别为5、15、30、50 乘坐这几种交通工具能如期到达的概率依次为100、70、60、90。求该人如期到达的概率。解:设,分别表示乘坐飞机、火车、轮船、汽车四种交通工具,B表示如期到达。名师资料总结-精品资料欢迎下载-名师精心整理-第 15 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 16 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 17 页,共 29 页

49、 -名师资料总结-精品资料欢迎下载-名师精心整理-第 18 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 19 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 20 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 21 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 22 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 23 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 24 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 25 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 26 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 27 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 28 页,共 29 页 -名师资料总结-精品资料欢迎下载-名师精心整理-第 29 页,共 29 页 -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁