《2022年难点函数值域及求法 .pdf》由会员分享,可在线阅读,更多相关《2022年难点函数值域及求法 .pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、难点 6 函数值域及求法函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题.难点磁场()设 m 是实数,记M=m|m1,f(x)=log3(x24mx+4m2+m+11m).(1)证明:当 mM 时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x 都有意义,则 mM.(2)当 mM 时,求函数f(x)的最小值.(3)求证:对每个mM,函数 f(x)的最小值都不小于1.案例探究例 1设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为(1),画面的上、下各留8 cm 的空白,左右各留5 cm 空白,
2、怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求 43,32,那么 为何值时,能使宣传画所用纸张面积最小?命题意图:本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力,属级题目.知识依托:主要依据函数概念、奇偶性和最小值等基础知识.错解分析:证明S()在区间43,32上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决.技巧与方法:本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决.解:设画面高为x cm,宽为 x cm,则x2=4840,设纸张面积为S cm2,则 S=(x+16)(x+10)=x2+(16+
3、10)x+160,将 x=1022代入上式得:S=5000+4410(8+5),当 8=5,即=85(851)时 S取得最小值.此时高:x=4840=88 cm,宽:x=8588=55 cm.如果 43,32可设3210,S(1)S(2)0 恒成立,试求实数a 的取值范围.命题意图:本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力,属级题目.知识依托:本题主要通过求f(x)的最值问题来求a的取值范围,体现了转化的思想与分类讨论的思想.错解分析:考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决.技巧与方法:解法一运用转化思想把f(x)0 转化为关于x 的
4、二次不等式;解法二运用分类讨论思想解得.(1)解:当 a=21时,f(x)=x+x21+2f(x)在区间 1,+)上为增函数,f(x)在区间 1,+)上的最小值为f(1)=27.(2)解法一:在区间1,+)上,f(x)=xaxx220 恒成立x2+2x+a0 恒成立.设 y=x2+2x+a,x 1,+)y=x2+2x+a=(x+1)2+a1 递增,当 x=1 时,ymin=3+a,当且仅当 ymin=3+a0 时,函数 f(x)0 恒成立,故a3.解法二:f(x)=x+xa+2,x 1,+)当 a0 时,函数 f(x)的值恒为正;当 a0 时,函数 f(x)0 恒成立,故a3.锦囊妙计本难点所
5、涉及的问题及解决的方法主要有:(1)求函数的值域此类问题主要利用求函数值域的常用方法:配方法、分离变量法、单调性法、图象法、换元法、不等式法等.无论用什么方法求函数的值域,都必须考虑函数的定义域.(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目.此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力.在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决.此类题要求考名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共
6、6 页 -生具有较强的分析能力和数学建模能力.歼灭难点训练一、选择题1.()函数 y=x2+x1(x21)的值域是()A.(,47B.47,+)C.2233,+)D.(,32232.()函数 y=x+x21的值域是()A.(,1B.(,1C.R D.1,+)二、填空题3.()一批货物随17 列货车从 A 市以 V 千米/小时匀速直达B 市,已知两地铁路线长400 千米,为了安全,两列货车间距离不得小于(20V)2千米,那么这批物资全部运到 B 市,最快需要 _小时(不计货车的车身长).4.()设 x1、x2为方程 4x24mx+m+2=0 的两个实根,当 m=_时,x12+x22有最小值 _.
7、三、解答题5.()某企业生产一种产品时,固定成本为5000 元,而每生产 100 台产品时直接消耗成本要增加2500 元,市场对此商品年需求量为500 台,销售的收入函数为R(x)=5x21x2(万元)(0 x5),其中 x 是产品售出的数量(单位:百台)(1)把利润表示为年产量的函数;(2)年产量多少时,企业所得的利润最大?(3)年产量多少时,企业才不亏本?6.()已知函数f(x)=lg(a21)x2+(a+1)x+1(1)若 f(x)的定义域为(,+),求实数 a 的取值范围;(2)若 f(x)的值域为(,+),求实数 a 的取值范围.7.()某家电生产企业根据市场调查分析,决定调整产品生
8、产方案,准备每周(按 120 个工时计算)生产空调器、彩电、冰箱共360 台,且冰箱至少生产60 台.已知生产家电产品每台所需工时和每台产值如下表:家电名称空调器彩电冰箱工时213141产值(千元)4 3 2 问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)8.()在 RtABC 中,C=90,以斜边 AB 所在直线为轴将ABC 旋转一周生名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 6 页 -成两个圆锥,设这两个圆锥的侧面积之积为S1,ABC 的内切圆面积为S2,记ABCABC=x.(1)求函数 f(x)=21SS的解析式并求f(x)的
9、定义域.(2)求函数 f(x)的最小值.参考答案难点磁场(1)证明:先将f(x)变形:f(x)=log3(x2m)2+m+11m,当 mM 时,m1,(xm)2+m+11m0 恒成立,故f(x)的定义域为R.反之,若 f(x)对所有实数x 都有意义,则只须 x2 4mx+4m2+m+11m0,令0,即 16m24(4m2+m+11m)0,解得 m1,故 mM.(2)解析:设u=x24mx+4m2+m+11m,y=log3u 是增函数,当u 最小时,f(x)最小.u=(x2m)2+m+11m,显然,当 x=m时,u取最小值为 m+11m,此时 f(2m)=log3(m+11m)为最小值.(3)证
10、明:当 mM 时,m+11m=(m1)+11m+13,当且仅当 m=2 时等号成立.log3(m+11m)log33=1.歼灭难点训练一、1.解析:m1=x2在(,21)上是减函数,m2=x1在(,21)上是减函数,y=x2+x1在 x(,21)上为减函数,y=x2+x1(x21)的值域为47,+).答案:B 2.解析:令x21=t(t0),则 x=212t.y=212t+t=21(t1)2+11 值域为(,1.答案:A 二、3.解析:t=V400+16(20V)2/V=V400+40016V216=8.答案:8 名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 6 页 -4.解析
11、:由韦达定理知:x1+x2=m,x1x2=42m,x12+x22=(x1+x2)22x1x2=m222m=(m41)21617,又 x1,x2为实根,0.m 1 或 m2,y=(m41)21617在区间(,1)上是减函数,在2,+)上是增函数又抛物线y 开口向上且以m=41为对称轴.故 m=1 时,ymin=21.答案:1 21三、5.解:(1)利润 y 是指生产数量x 的产品售出后的总收入R(x)与其总成本C(x)差,由题意,当x5 时,产品能全部售出,当x5 时,只能销售500 台,所以y=)1(25.012)50(5.02175.4)5)(25.05.0()52155()50)(25.0
12、5.0(215222xxxxxxxxxxx(2)在 0 x 5 时,y=21x2+4.75x0.5,当 x=ab2=4.75(百台)时,ymax=10.78125(万元),当 x5(百台)时,y120.25 5=10.75(万元)所以当生产475 台时,利润最大.(3)要使企业不亏本,即要求025.012505.075.421502xxxxx或解得 5x4.755625.210.1(百台)或5x48(百台)时,即企业年产量在10台到 4800 台之间时,企业不亏本.6.解:(1)依题意(a21)x2+(a+1)x+10 对一切 xR 恒成立,当a210 时,其充要条件是13511,0)1(4)
13、1(01222aaaaaaa或或即,a 1 或 a35.又 a=1 时,f(x)=0 满足题意,a=1 时不合题意.故 a1 或 a为35所求.(2)依题意只要t=(a21)x2+(a+1)x+1 能取到(0,+)上的任何值,则f(x)的值域为 R,故有0012a,解得 1a35,又当 a2 1=0 即 a=1 时,t=2x+1 符合题意而a=1 时不合题意,1a35为所求.7.解:设每周生产空调器、彩电、冰箱分别为x 台、y 台、z台,由题意得:x+y+z=360名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 6 页 -120413121zyxx0,y0,z60.假定每周总产值
14、为S千元,则S=4x+3y+2z,在限制条件之下,为求目标函数S的最大值,由消去z,得 y=3603x.将代入得:x+(3603x)+z=360,z=2xz60,x 30.再将代入S 中,得 S=4x+3(3603x)+22x,即 S=x+1080.由条件及上式知,当x=30 时,产值 S最大,最大值为S=30+1080=1050(千元).得 x=30 分别代入和得y=36090=270,z=230=60.每周应生产空调器30 台,彩电270 台,冰箱60 台,才能使产值最大,最大产值为1050 千元.8.解:(1)如图所示:设 BC=a,CA=b,AB=c,则斜边 AB上的高 h=cab,S1=ah+bh=,)2(),(22cbaSbacab,f(x)=221)()(4cbacbaabSS又)1(222222xcabcxbacbaxcba代入消 c,得 f(x)=1)(22xxx.在 RtABC 中,有 a=csinA,b=ccosA(0A2),则x=cba=sinA+cosA=2sin(A+4).1x2.(2)f(x)=12)1(21)(22xxxxx+6,设 t=x1,则 t(0,21),y=2(t+t2)+6 在(0,21上是减函数,当x=(21)+1=2时,f(x)的最小值为62+8.名师资料总结-精品资料欢迎下载-名师精心整理-第 6 页,共 6 页 -